

Exercise A

1 Evaluate:

a $\sum_{r=0}^3 (2r + 1)$

b $\sum_{r=1}^{40} r$

c $\sum_{r=1}^{20} r$

d $\sum_{r=1}^{99} r$

e $\sum_{r=10}^{40} r$

f $\sum_{r=100}^{200} r$

g $\sum_{r=21}^{40} r$

h $\sum_{r=1}^k r + \sum_{r=k+1}^{80} r, 0 < k < 80$

2 Given that $\sum_{r=1}^n r = 528$, find the value of n . (4 marks)3 Given that $\sum_{r=1}^k r = \frac{1}{2} \sum_{r=1}^{20} r$, find the value of k . (4 marks)4 a Find an expression for $\sum_{r=1}^{2n-1} r$. (3 marks)b Hence show that $\sum_{r=n+1}^{2n-1} r = \frac{3}{2}n(n-1)$, $n \geq 2$. (3 marks)5 Show that $\sum_{r=n-1}^{2n} r = \frac{1}{2}(n+2)(3n-1)$, $n \geq 1$. (5 marks)6 a Show that $\sum_{r=1}^{n^2} r - \sum_{r=1}^n r = \frac{1}{2}n(n^3 - 1)$.b Hence evaluate $\sum_{r=10}^{81} r$.**Hint** Use your result from part a.

7 Calculate the sum of each series:

a $\sum_{r=1}^{55} (3r - 1)$

b $\sum_{r=1}^{90} (2 - 7r)$

c $\sum_{r=1}^{46} (9 + 2r)$

8 Show that:

a $\sum_{r=1}^n (3r + 2) = \frac{1}{2}n(3n + 7)$

b $\sum_{r=1}^{2n} (5r - 4) = n(10n - 3)$

c $\sum_{r=1}^{n+2} (2r + 3) = (n+2)(n+6)$

d $\sum_{r=3}^n (4r + 5) = (2n + 11)(n - 2)$

9 a Show that $\sum_{r=1}^k (4r - 5) = 2k^2 - 3k$. (5 marks)b Find the smallest value of k for which $\sum_{r=1}^k (4r - 5) > 4850$. (4 marks)10 Given that $f(r) = ar + b$ and $\sum_{r=1}^n f(r) = \frac{1}{2}n(7n + 1)$, find the constants a and b . (5 marks)11 a Show that $\sum_{r=1}^{4n-1} (3r + 1) = 24n^2 - 2n - 1$, $n \geq 1$. (5 marks)b Hence calculate $\sum_{r=1}^{99} (3r + 1)$. (2 marks)12 a Show that $\sum_{r=1}^{2k+1} (4 - 5r) = -(2k + 1)(5k + 1)$, $k \geq 0$. (5 marks)b Hence evaluate $\sum_{r=1}^{25} (4 - 5r)$. (2 marks)c Find the value of $\sum_{r=1}^{15} (5r - 4)$. (1 mark)

13 Given that $\sum_{r=1}^n f(r) = n^2 + 4n$, deduce an expression for $f(r)$ in terms of r .

14 $f(r) = qr + b$, where a and b are rational constants.

Given that $\sum_{r=1}^4 f(r) = 36$ and $\sum_{r=1}^6 f(r) = 78$,

a find an expression for $\sum_{r=1}^n f(r)$ (6 marks)

b hence calculate $\sum_{r=1}^{10} f(r)$. (2 marks)

Exercise B

1 Evaluate:

a $\sum_{r=1}^4 r^2$

b $\sum_{r=1}^{40} r^2$

c $\sum_{r=21}^{40} r^2$

d $\sum_{r=1}^{99} r^3$

e $\sum_{r=1}^{100} r^3$

f $\sum_{r=100}^{200} r^3$

g $\sum_{r=1}^k r^2 + \sum_{r=k+1}^{80} r^2$, $0 < k < 80$.

2 Show that:

a $\sum_{r=1}^{2n} r^2 = \frac{1}{3}n(2n+1)(4n+1)$

b $\sum_{r=1}^{2n-1} r^2 = \frac{1}{3}n(2n-1)(4n-1)$

c $\sum_{r=n}^{2n} r^2 = \frac{1}{6}n(n+1)(14n+1)$

3 Show that, for any $k \in \mathbb{N}$, $\sum_{r=1}^{n+k} r^3 = \frac{1}{4}(n+k)^2(n+k+1)^2$

4 a Show that $\sum_{r=n+1}^{3n} r^3 = n^2(4n+1)(5n+2)$ (3 marks)

b Hence evaluate $\sum_{r=11}^{30} r^3$. (2 marks)

5 a Show that $\sum_{r=n}^{2n} r^3 = \frac{3}{4}n^2(n+1)(5n+1)$. (3 marks)

b Hence evaluate $\sum_{r=30}^{60} r^3$. (2 marks)

6 Evaluate:

a $\sum_{m=1}^{30} (m^2 - 1)$

b $\sum_{r=1}^{40} r(r+4)$

c $\sum_{r=1}^{80} r(r^2 + 3)$

d $\sum_{r=11}^{35} (r^3 - 2)$

7 a Show that $\sum_{r=1}^n (r+2)(r+5) = \frac{1}{3}n(n^2 + 12n + 41)$ (4 marks)

b Hence calculate $\sum_{r=10}^{50} (r+2)(r+5)$. (3 marks)

8 a Show that $\sum_{r=1}^n (r^2 + 3r + 1) = \frac{1}{3}n(n+a)(n+b)$, where a and b are integers to be found. (4 marks)

b Hence evaluate $\sum_{r=19}^{40} (r^2 + 3r + 1)$. (3 marks)

9 a Show that $\sum_{r=1}^n r^2(r-1) = \frac{1}{12}n(n+1)(3n^2-n-2)$. (4 marks)

b Hence show that $\sum_{r=1}^{2n-1} r^2(r-1) = \frac{1}{3}n(2n-1)(6n^2-7n+1)$ (4 marks)

10 a Show that $\sum_{r=1}^n (r+1)(r+3) = \frac{1}{6}n(2n^2+an+b)$, where a and b are integers to be found. (4 marks)

b Hence find an expression, only in terms of n , for $\sum_{r=n+1}^{2n} (r+1)(r+3)$. (3 marks)

11 a Show that $\sum_{r=1}^n (r+3)(r+4) = \frac{1}{3}n(n^2+an+b)$, where a and b are integers to be found. (4 marks)

b Hence find an expression, only in terms of n , for $\sum_{r=n+1}^{3n} (r+3)(r+4)$. (3 marks)

12 a Show that $\sum_{r=1}^n r(r+3)^2 = \frac{1}{4}n(n+1)(n^2+an+b)$, where a and b are integers to be found. (5 marks)

b Hence evaluate $\sum_{r=10}^{20} r(r+3)^2$. (3 marks)

13 a Show that, for any $k \in \mathbb{N}$, $\sum_{r=1}^{kn} (2r-1) = k^2 n^2$.

b Hence find a value of n such that $\sum_{r=1}^{5n} (2r-1) = \sum_{r=1}^n r^3$.

14 a Show that $\sum_{r=1}^n (r^3 - r^2) = \frac{1}{12}n(n+1)(n-1)(3n+2)$. (4 marks)

b Hence find the value of n that satisfies $\sum_{r=1}^n (r^3 - r^2) = \sum_{r=1}^n 7r$. (5 marks)

Exercise C

Throughout this exercise you may assume the standard results for $\sum_{r=1}^n r$, $\sum_{r=1}^n r^2$ and $\sum_{r=1}^n r^3$.

1 Evaluate:

a $\sum_{r=1}^{10} r$

b $\sum_{r=10}^{50} r$

c $\sum_{r=1}^{10} r^2$

d $\sum_{r=1}^{10} r^3$

e $\sum_{r=26}^{50} r^2$

f $\sum_{r=50}^{100} r^3$

g $\sum_{r=1}^{60} r + \sum_{r=1}^{60} r^2$

2 Write each of the following as an expression in terms of n .

a $\sum_{r=1}^n (3r-5)$

b $\sum_{r=1}^n (r^2+r)$

c $\sum_{r=1}^n (3r^2+7r)$

d $\sum_{r=1}^n (4r^3+6r^2)$

e $\sum_{r=1}^n (r^2-2r)$

f $\sum_{r=1}^n (r^2-3r)$

g $\sum_{r=1}^n (r^2-5)$

h $\sum_{r=1}^n (2r^3+3r^2+r+4)$

3 Evaluate $\sum_{r=1}^{30} r(3r-1)$. (5 marks)

4 a Show that $\sum_{r=1}^n r^2(r-3) = \frac{1}{4}n(n+1)(n^2+an+b)$, where a and b are integers to be found. (4 marks)

b Hence evaluate $\sum_{r=1}^{20} r^2(r-3)$. (2 marks)

5 a Show that $\sum_{r=1}^n (2r-1)^2 = \frac{1}{3}n(an+b)(an-b)$, where a and b are integers to be found. (5 marks)

b Hence find $\sum_{r=1}^{2n} (2r-1)^2$. (2 marks)

6 a Show that $\sum_{r=1}^n r(r+2) = \frac{1}{6}n(n+1)(an+b)$, where a and b are integers to be found. (4 marks)

b Hence evaluate $\sum_{r=15}^{30} r(r+2)$. (3 marks)

7 a Show that $\sum_{r=n+1}^{2n} r^2 = \frac{1}{6}n(2n+1)(an+b)$, where a and b are integers to be found. (4 marks)

b Hence evaluate $\sum_{r=16}^{30} r^2$. (2 marks)

8 a Show that $\sum_{r=1}^n (r^2 - r - 1) = \frac{1}{3}n(n^2 - 4)$. (4 marks)

b Hence evaluate $\sum_{r=10}^{40} (r^2 - r - 1)$. (3 marks)

c Find the value of n such that $\sum_{r=1}^n (r^2 - r - 1) = \sum_{r=1}^{2n} r$. (5 marks)

9 a Show that $\sum_{r=1}^n r(2r^2 + 1) = \frac{1}{2}n(n+1)(n^2 + n + 1)$. (4 marks)

b Hence show that there are no values of n that satisfy $\sum_{r=1}^n r(2r^2 + 1) = \sum_{r=1}^n (100r^2 - r)$. (6 marks)

10 a Show that $\sum_{r=1}^n r(r+1)^2 = \frac{1}{12}n(n+1)(n+2)(an+b)$, where a and b are integers to be found. (5 marks)

b Hence find the value of n that satisfies $\sum_{r=1}^n r(r+1)^2 = \sum_{r=1}^n 70r$. (6 marks)

11 Find the value of n that satisfies $\sum_{r=1}^n r^2 = \sum_{r=1}^{n+1} (9r+1)$. (7 marks)