Trigonometry (Further Maths)

1.

Prove that
$$\tan \theta + \frac{1}{\tan \theta} \equiv \frac{1}{\sin \theta \cos \theta}$$

.....

(3 marks)

2.

$$f(x) = \sin x$$
 $180^{\circ} \le x \le 360^{\circ}$
 $g(x) = \cos x$ $0^{\circ} \le x \le \theta$

(a) Calculate the value of f(210°).

Answer (1 mark)

(b) Complete this inequality for the range of f(x).

Answer $\leqslant f(x) \leqslant$ (2 marks)

	vvork o	ut the value of θ .				
		$\theta = \dots$		d	earees	(1 mark)
3.						
	Express	$1 - \tan\theta \sin\theta \cos\theta$	in terms of $\cos \theta$).		
		Answer			(3 marks)

(c) You are given that $0 \le g(x) \le 1$

4.				
	Solve	$3\cos^2\theta - 1 = 0$	for	0

Solve	$3\cos^2\theta-1=0$	for	$0^{\circ} \leqslant \theta \leqslant 180^{\circ}$

6.

Prove that	$\frac{\sin\theta - \sin^3\theta}{\cos^3\theta}$	$\frac{\theta}{\theta} \equiv \tan \theta$	[3 marks]
Solve 16	$6\sin^2 x = 1$	for	0° ≤ <i>x</i> ≤ 270°

[5 marks]

8.

Prove that
$$2 \tan^2 \theta + 1 \equiv \frac{1 + \sin^2 \theta}{1 - \sin^2 \theta}$$
 where $\sin^2 \theta \neq 1$

[3 marks]

Work out the values of x between 0° and 360° for which

$$25\cos^2 x = 9$$

Give your answers to 1 decimal place.	[4 marks]

Prove that	$\sin^2 x - 3\cos^2 x \equiv 4\sin^2 x - 3$	[2
Hence, or oth	herwise, work out the values of x between 0°	° and 360° for which
$\sin^2 x$ –	$3\cos^2 x = 0$	[4

Angle θ is obtuse and $\sin\theta = \frac{\sqrt{11}}{6}$

Work out the value of $\cos\theta$

[4 marks]