1.

Show that the following equations have a solution in the interval shown in the brackets.

(a)
$$x^3 - 2x^2 - 5 = 0$$
 (2 < x < 3)

(b)
$$2x^4 - 3x^2 - 1 = 0$$

$$(-2 < x < -1)$$

(c)
$$x^5 - x - 2 = 0$$
 $(1 < x < 2)$

(d)
$$x^4 - 10x^2 + 2 = 0$$
 $(-4 < x < -3)$

$$(-4 < x < -3)$$

(e)
$$x^3 + 2x^2 - 3x - 6 = 0$$
 (1 < x < 2)

(f)
$$x^6 - 7x^2 + 4 = 0$$
 $(0 < x < 1)$

2.

The equation $3x - 2x^3 + 5 = 0$ has one solution.

a) Show that this solution lies in the interval 1.5 < x < 2.

b) Show that $3x - 2x^3 + 5 = 0$ can be written as:

$$x = \sqrt[3]{\frac{3x+5}{2}}$$

c) Use the iteration $x_{n+1} = \sqrt[3]{\frac{3x_n + 5}{2}}$ to find the solution to $3x - 2x^3 + 5 = 0$ to 5 d.p. Use a starting value of $x_0 = 2$.

3.

a Show that the equation $x^6 - 5x + 3 = 0$ has a root between x = 1 and x = 1.5.

b Use the iteration formula $x_{n+1} = \sqrt[5]{5 - \frac{3}{x_n}}$ to find an approximation for the root of the equation $x^6 - 5x + 3 = 0$, giving your answer to 2 decimal places.

4.

Show that the equation $x^2 - 3x - 5 = 0$ can be rewritten in the form $x = \sqrt{3x + 5}$

b Using $x = \sqrt{3x + 5}$ with $x_0 = 4$, use iteration to find one root of the equation $x^2 - 3x - 5 = 0$, giving your answer correct to 5 d.p.

5.

(a) Show that the equation $x^3 + 7x - 5 = 0$ has a solution between x = 0 and x = 1

(b) Show that the equation $x^3 + 7x - 5 = 0$ can be arranged to give $x = \frac{5}{x^2 + 7}$

(2)

(2)

(d) By substituting your answer to part (c) into $x^3 + 7x - 5$, comment on the accuracy of your estimate for the solution to $x^3 + 7x - 5 = 0$														
	(2)													
6. (a) Show that the equation $x^3 + x = 7$ has a solution between 1 and 2														
(b) Show that the equation $x^3 + x = 7$ can be rearranged to give $x = \sqrt[3]{7 - x}$	(2)													
	(1)													

7.

Using
$$x_{n+1} = -2 - \frac{4}{x_n^2}$$

with $x_0 = -2.5$

(a) find the values of x_1 , x_2 and x_3

1	=											-											
2	=																						
3	=							 										 					

(b) Explain the relationship between the values of x_1 , x_2 and x_3 and the equation $x^3 + 2x^2 + 4 = 0$

(2)

Use iteration to find one root of each of these equations, giving your answers correct to 5 d.p.

$$x^2 - 4x - 4 = 0$$
, use $x_0 = 5$

a
$$x^2 - 4x - 4 = 0$$
, use $x_0 = 5$ b $x^2 - 6x - 8 = 0$, use $x_0 = 7$