Probability Distributions of Discrete Random Variables

1 A discrete random variable X has the following probability distribution:

$$x: 1$$
 2 3 4 $P(X = x): \frac{1}{3}$ $\frac{1}{3}$ k $\frac{1}{4}$

where k is a constant.

- (a) Find the value of k.
- (b) Find P(X ≤ 3).
- 2 The discrete random variable Y has the following probability distribution:

$$y: -1 \qquad 0 \qquad 1$$

$$P(Y = y): \quad a \qquad \frac{1}{4} \qquad a$$

where a is a constant.

- (a) Find the value of a. (b) Find $P(Y \ge 0)$.

3.

A cubical die is biased in such a way that the probability is proportional to the number showing, for example, P(die lands on 5) = 5k, where k is a constant. Find the probability distribution for S, the score on the die.

4.

Two tetrahedral dice have the numbers 1, 2, 3 and 4 on their faces. The dice are thrown together. Let S = the sum of their two scores and let D = the difference between their two scores.

- (a) Show that $P(S = 6) = \frac{3}{16}$.
- (b) Find the probability distribution for the random variable S.
- (c) Find $P(S \leq 7)$
- (d) Show that $P(D = 1) = \frac{3}{8}$.
- (e) Find the probability distribution for the random variable D.
- (f) Find P(D ≥ 2).

5.

Sam's pocket contains one £1 coin, one 50p coin and three 20p coins. He selects 2 coins at random to place in a collection box. The random variable X represents the amount, in pence, that he puts in the box.

- (a) Show that P(X = 70) = 0.3.
- (b) Find the probability distribution for X.

A fair coin is tossed repeatedly until a head appears or 3 tosses have been made. The random variable T represents the number of tosses.

- (a) Show that $P(T = 2) = \frac{1}{4}$.
- (b) Find the probability distribution of T.

The random variable H represents the number of heads.

(c) Find the probability distribution of H.

7.

The discrete random variable X has probability function given by:

$$P(X = x) = \begin{cases} \left(\frac{1}{2}\right)^x, & x = 1, 2, 3, 4, 5, \\ C, & x = 6, \\ 0, & \text{otherwise,} \end{cases}$$

where C is a constant.

Determine the value of C.

[E]