Practice questions

1 Which line represents the correct number of protons, neutrons and electrons in an atom of one of the isotopes of lead 208 Pb?

	protons	neutrons	electrons
Α .	82	126	1.126
В	126	82	126
С	208	82	208
D	82	126	82

2 What is the specific charge of a gold $^{197}_{79}$ Au nucleus? The mass of the gold nucleus is 3.29×10^{-25} kg; the charge on the electron is 1.6×10^{-19} C.

A $3.63 \times 10^7 \text{ Ckg}^{-1}$

C $3.92 \times 10^7 \text{ Ckg}^{-1}$

B $3.84 \times 10^7 \,\mathrm{Ckg^{-1}}$

D $9.56 \times 10^7 \text{ Cg}^{-1}$

3 Uranium-236 may split into a caesium nucleus, a rubidium nucleus and four neutrons as shown below in the following nuclear equation. What is the value of X for the rubidium nucleus?

 $^{236}_{92}U \rightarrow ^{137}_{55}C_S + ^{X}_{37}Rb + 4^{1}_{0}n$

B 95

C 98

D 99

Date:

-1-

4 What is the charge, in C, of an atom of ${}^{15}_{7}$ N from which a single electron has been removed?

 $A - 9.6 \times 10^{-19} C$

C +1.6 × 10-19 C

 $B - 1.6 \times 10^{-19} C$

 $D + 9.6 \times 10^{-19}C$

5 In a radioactive decay a gamma photon of wavelength 8.3×10^{-13} m is emitted. What is the energy of the photon? The speed of light is $3 \times 10^8 \,\mathrm{m \, s^{-1}}$.

A 5.4×10^{-46} J

C 571

B 2.4×10^{-13} J

D 2.0×10^{43} J

6 Thorium decays by the emission of an alpha particle as shown in the equation:

$$^{229}Th \rightarrow ^{X}Ra + \alpha$$

What are the correct values for X and Y?

	Х	Y
Д	225	88
В	88	225
С	229	91
D	227	86

 $7^{-14}C$ is a radioactive isotope of carbon. It can form an ion when two electrons are removed from the atom. What is the charge on this ion in coulombs?

 $A = -9.6 \times 10^{-19} C$

C 3.2×10^{-19} C

B -3.2×10^{-19} C

D 9.6 × 10-19 C

8	The line spectrum from helium inclu of 587.6 nm. What is the energy of a			ength	
4	A 3.89×10^{-40} J	c 1.13 × 10 ⁻²⁷ J			
	B 1.17 × 10 ⁻³¹ J ⋅	D 3.38×10^{-19} J			
9	An alpha particle has a kinetic energy alpha particle is 6.6×10^{-27} kg. What				
	A $1.2 \times 10^7 \mathrm{m}\mathrm{s}^{-1}$	C $1.5 \times 10^{14} \mathrm{m s^{-1}}$	1		
	B $1.7 \times 10^7 \mathrm{m}\mathrm{s}^{-1}$	D $2.9 \times 10^{14} \mathrm{m s^{-1}}$	1		
10	$^{238}_{92}U$ decays by emitting α and β^- par form $^{206}_{82}Pb$. How many β^- decays are			Encional .	
	A 2 · B 4	C 6	D 8		
11	a) Name the constituent of an atom	which			
	i) has zero charge			(1)	
	ii) has the largest specific charge	2		(1)	
	iii) when removed leaves a differ	rent isotope of the el	lement.	(1)	
	b) The equation		*		
	$^{99}_{43}$ Tc $\rightarrow {}^{A}_{Z}$ Ru + $^{O}_{-1}\beta$ + X				
	represents the decay of technetium β- particle.	n-99 by the emission	n of a	***	
.40	i) Identify the particle X.			(1)	
	ii) Determine the values of A an	d Z.		(2)	
12	Alpha decay is a process by which an element may decay.	unstable isotope of a	an		
	a) State what is meant by an isotope.			(2)	
	b) Copy and complete this equation f	or alpha decay:		(2)	
100	$_{Z}^{A}X \rightarrowY + _{2}^{4}He$				
	c) Explain why the alpha particle, one unaffected by the strong nuclear for			(2)	
13	An atom of calcium, $^{48}_{20}$ Ca, is ionised by	by removing two elec	ctrons.		
	 a) State the number of protons, neutror formed. 	ns and electrons in the	e ion	(1)	
	b) Calculate the charge of the ion.			(1)	
	c) Calculate the specific charge of the	ion.		(2)	*
14	a) Describe how the strong nuclear for with the separation of the nucleons, separation.			(3)	
				1986	

- **b)** An unstable nucleus can decay by the emission of an alpha particle. State the nature of an alpha particle. (1)
- c) Copy and complete the equation below to represent the emission of an α particle by a $^{238}_{92}U$ nucleus.

$${}^{238}_{92}U \rightarrow :::Th + :::\alpha$$
 (2)

15 a) Explain what is meant by the specific charge of a nucleus. (1)

The incomplete table shows information for two isotopes of uranium.

	Number of protons	Number of neutrons	Specific charge of nucleus
First isotope	92	143	
Second isotope			3.7 × 10 ⁷

- **b)** Copy the table and add the unit for specific charge in the heading of the last column of the table.
- c) Add the number of protons in the second isotope to the second row of the table. (1)
- **d)** Calculate the specific charge of the first isotope and write this in the table. (3)
- e) Calculate the number of neutrons in the second isotope and put this number in the table. (4)