Physics

1.

а	i1	the maximum displacement from equilibrium or rest position	B1	allow zero or undisturbed for equilibrium
	2	number of oscillations/vibrations (at a point) per unit time	B1	number of wavelengths passing a point or produced
				by the wave source per unit time
				allow per second NOT amount for number
	3	how far 'out of step' (out of sync) the oscillations at two points	B1	alt e.g. the fraction of a cycle between the
		on the wave/string are/AW		oscillations at the two points
	ii 1	all have same frequency or same amplitude	B1	N.B. withhold mark if extra incorrect answers given
	2	all have different phases/ phase differences	B1	allow not in phase or all out of phase
b	i	progressive a wave which transfers energy	B1	accept phase relationship descriptions between
		stationary a wave which traps/stores energy (in pockets)	B1	different points on wave;
		or progressive : transfers shape/information from one place to		
		another		must be a comparison for same property to score
		stationary where the shape does not move along/which has		both marks
		nodes and antinodes/AW		
	ii	the wave <u>reflected</u> (at the fixed end of the wire)	B1	
		interferes/superposes with the incident wave	B1	
		to produce a resultant wave with nodes and antinodes/no	D 4	
	iii 1	energy transfer	B1 B1	
		(all points have) same frequency	B1	allow some phase difference have
	2	P and Q have same amplitude <u>and</u> (are in) phase S has larger amplitude than P <u>and Q</u>	B1	allow same phase difference here allow different to
	2	S has a phase difference of π /in antiphase to P and Q	B1	or 180° max any 3 out of 4 marking points
	iv 1	15 Hz	B1	or roo max any 5 out or 4 marking points
		as all points in the fundamental/first harmonic mode move in		accept string is ½ λ long/between ends
		phase	B1	
	2	120 Hz	B1	
		for every 10 cm to be at rest λ = 20 cm (so 4 x frequency of		accept as all points are nodes or f = 8f ₀ or is 8 th
		Fig. 4.2)	B1	harmonic

				1
а	i	when two (or more) waves meet/superpose/overlap (at a point)	M1	NOT interact, combine, join, connect, collide, hit,
		there is a change in overall displacement	A1	intersect, pass through, etc.
				allow the resultant displacement equals the sum of
				the individual displacements
	ii	constant phase difference/relationship (between the waves)	B1	allow fixed not same
b		$\lambda = c/f = 3.0 \times 10^8 / 1.0 \times 10^{10}$	M1	
		$\lambda = 3.0 \times 10^{-2}$ so aerial length = 1.5 x 10 ⁻² (m)	A1	accept 1.5 c(m)
С	i1	the path difference between the signals (from the two	B1	give 1 mark out of 2 for maxima and minima occur
		transmitters) changes (along OP)		(because of interference)
		causing the detected signal to vary between maximum and	B1	
		minimum values/AW		
		or when signals (at the point on OP) are in phase there is a		
		maximum		
		when (π) out of phase there is a minimum		
	2	$x = \lambda D/a = 3.0 \times 10^{-2} \times 4.0/0.20 (= 0.60)$	C1	ecf (b) 20 times answer to (b)
		so distance = x/2 = 0.30 (m)	A1	allow 1 SF answer here
	ii	amplitude of signal decreases (inversely) with distance	B1	allow intensity; no mark if any suspicion of
		because energy emitted by the transmitters spreads out (so less		decrease being caused by interference effect
		is collected by the receiver the further away it is)	B1	accept any statement which conveys the idea of
				energy spreading correctly,e.g. I α 1/d ²
	iii	when AO – BO = λ 2 a minimum occurs/AW or phase difference	B1	idea that movement of $\lambda/2$ will change maximum to
		of π (180°) between detected signals from A and B		minimum or vice versa
		so distance = $\lambda/2 = 1.5 \times 10^{-2}$ (m)	B1	ecf (b) same answer as (b); accept 1.5 c(m)
d	i	intensity increases by factor of 4	B1	
		as intensity α (amplitude) ²	B1	
	ii	intensity falls to zero	B1	
		(emitted) signal is (vertically) polarised	B1	
		receiver in position only to detect horizontally polarised signal	B1	allow transmitter and detector act like 'crossed
		,,, ,		polarisers' or quoting Malus' law correctly

(a)	similarity: any valid point e.g. (both have) vibrations, frequency, am wavelength, period, displacement (not velocity) difference:		
	e.g. no energy transfer for standing waves } neighbouring points vibrate in phase for standing waves } only standing waves have nodes and antinodes } {allow standing waves are "trapped"/fixed/confined/don't move forv	B1 vard}	[2]
(b) (i)	arrows show vertical oscillations maximum amplitude at top {allow ecf for horiz.} less in middle AND very small (or zero) at base {allow 1 mark only for unlabelled diagram showing representation of {2 marks for unlabelled diagram plus an arrow} {allow single headed arrows}	B1 B1 B1 of amp	[3] litude}
(ii)	wavelength = 4 x 0.36 = 1.44m	B1	[1]
(iii)	recall of v = f λ f= v/ λ = 330/1.44 (allow ecf) = 229 (or 230) Hz	B1 B1	[2]
(iv)	if open at both ends each end must be an antinode OR diagram hence wavelength = 0.72m {allow ecf} and frequency = 458 (or 460) Hz {allow ecf}	B1 C1 A1	[3]

a	i	(Filament) lamp / bulb	B1	
	ii	V	B1	Allow Resistance is the ratio of V and I.
		Resistance is $\frac{V}{r}$ (and not the gradient) – wtte		Not units in definition
		1		
<u> </u>				
	iii	current = 1.2 (A) / $R = \frac{2.0}{1.2}$	C1	
		$\frac{12}{12}$		
		resistance = 1.7 (Ω)	A1	Bald 1.7 (Ω) scores 2/2 marks
b		Straight line through the origin (for first three squares for V)	B1	These are independent marks
		or angle line anough the origin (for instance squares for v)	01	These are independent marks
		Correct curve (after three squares of V)		
		conect curve (alter three squares of v)	B1	
			ы	
		a_{1}	D4	
с	· ·	current = 0 (A)	B1	
 				
	ii	potential difference = 0.4 (V)	B1	

а	i	Straight line (by eye)	B1	
	ii	Q = It	C1	
		$Q = 5.2 \times (3.5 \times 3600)$ charge = 6.55×10^4 unit: coulomb / C	A1	Allow 2 sf answer Allow 6.6×10^4
			B1	This unit mark is an independent mark
b	i	$R = \frac{\rho L}{r}$	C1	Allow any subject
		$L = \frac{\frac{A}{3.6 \times 2.0 \times 10^{-8}}}{7.9 \times 10^{-7}}$	C1	
			A1	Bald 9.1 × 10 ⁻² m scores 3/3
		length = 9.1×10^{-2} (m)		
	іі 1.	resistance of lamps = $\frac{3.6}{3}$ (= 1.2)	C1	
		total resistance = $1.2 + 0.48$ total resistance = 1.68Ω	A1	Possible ecf from above step for resistance of lamps in parallel Allow 1.7 Ω
	ii 2.	current = $\frac{12}{1.68}$ current 7.1(4) (A)	B1	Possible ecf Allow 2 sf answer
	iii	Appreciation that 'internal resistance' is responsible for dimness	B1	
		(Larger) voltage across internal resistance / less p.d across lamps	B1	