Selected Questions – Set 7 - Answers

1.

Q	ues	tion	Expected Answers	Marks	Additional Guidance
	a	(i)	uniformly spaced, vertical parallel lines must begin and end on the plates with a minimum of three lines	B1	ignore any edge effects
			arrow in the correct direction down	B1	
		(ii)	$E = V / d \qquad E = 60 / 5 \times 10^{-3} \\ = 12000 (V m^{-1})$	A1	
	b	(i)	Use of energy qV and kinetic energy = ½ mv ²	M1	
			$v = [(2qV)/m]^{1/2}$		
			v = $[(2 \times 3.2 \times 10^{-19} \times 400)/6.6 \times 10^{-27}]^{1/2}$	M1	
			v = 1.97 x 10 ⁵ (m s ⁻¹)	A0	
		(ii)	a = F / m a = Eq / m	C1	Both required for the mark
			a = (12000 x 3.2 x 10 ⁻¹⁹) / 6.6 x 10 ⁻²⁷)		
			= 5.82 x 10 ¹¹ (m s ⁻²)	A1	
		(iii)	1 $t = (16 \times 10^{-3}) / 2 \times 10^{5}$	M1	Answer will depend on number of sf used by candidate.
			= 8 x 10 ⁻⁸ (s)	A0	
			2 s = $\frac{1}{2}$ a x t ² = $\frac{1}{2}$ [5.82 x10 ¹¹ x (8 x 10 ⁻⁸) ²]	C1	Using u = 2 x 10 ⁵ scores 0/2
			= 1.86 x 10 ⁻³ (m)	A1	Allow slight variation in answers that follow from the candidates working

Question	Answers	Additional Comments/Guidance	Mark
(a)	force between two (point) charges is proportional to product of charges ✓ inversely proportional to square of distance between the charges ✓	Mention of force is essential, otherwise no marks. Condone "proportional to charges". Do not allow "square of radius" when radius is undefined. Award full credit for equation with all terms defined.	2
(b)	<i>V</i> is inversely proportional to <i>r</i> [or $V \propto (-)1/r$] \checkmark (<i>V</i> has negative values) because charge is negative [or because force is attractive on + charge placed near it or because electric potential is + for + charge and – for – charge] \checkmark potential is defined to be zero at infinity \checkmark	Allow $V \times r$ = constant for 1 st mark	max 2
(c)(i)	$Q(=4\pi\varepsilon_0 rV) = 4\pi\varepsilon_0 \times 0.125 \times 2000$ (for example, using any pair of values from graph) \checkmark = 28 (27.8) (±1) (nC) \checkmark	or gradient = Q/4πε ₀ = 2000/8 ✓ (gives Q = 28 (27.8) ±1 (nC) ✓	2
:(c)(ii)	at $r = 0.20m$ V = -1250V and at $r = 0.50m$ V = -500V so pd $\Delta V = -500 - (-1250) = 750$ (V) \checkmark work done ΔW (= $Q\Delta V$) = 60 × 10 ⁻⁹ × 750 = 4.5(0) × 10 ⁻⁵ (J) (45 µJ) \checkmark (final answer could be between 3.9 and 5.1 × 10 ⁻⁵)	Allow tolerance of ± 50V on graph readings. [Alternative for 1 st mark: $\Delta V = \frac{27.8 \times 10^{-9}}{4\pi\varepsilon_0} \times \left(\frac{1}{0.2} - \frac{1}{0.5}\right) \text{ (or similar}$ substitution using 60 nC instead of 27.8 nC: use of 60 nC gives $\Delta V = 1620V$]	2
(c)(iii)	$E\left(=\frac{Q}{4\pi\varepsilon_0 r^2}\right) = \frac{27.8 \times 10^{-9}}{4\pi\varepsilon_0 \times 0.40^2} \checkmark = 1600 (1560) (V \text{ m}^{-1}) \checkmark$ [or deduce $E = \frac{V}{r}$ by combining $E = \frac{Q}{4\pi\varepsilon_0 r^2}$ with $V = \frac{Q}{4\pi\varepsilon_0 r} \checkmark$ from graph $E = \frac{625 \pm 50}{0.40} = 1600 (1560 \pm 130) (V \text{ m}^{-1}) \checkmark$]	Use of $Q = 30 \text{ nC}$ gives 1690 (V m ⁻¹). Allow ecf from Q value in (c)(i). If $Q = 60 \text{ nC}$ is used here, no marks to be awarded.	2

а	i	required pd (= $2.5 \times 10^6 \times 12 \times 10^{-3}$) = $3.0(0) \times 10^4$ (V) \checkmark	1	
			-	

а	ii	charge required $Q (= CV) = 3.7 \times 10^{-12} \times 3.00 \times 10^4 \checkmark$ $(= 1.11 \times 10^{-7} \text{ C})$ time taken $t \left(= \frac{Q}{I} \right) = \frac{1.11 \times 10^{-7}}{3.2 \times 10^{-8}} = 3.5 (3.47) \text{ (s) }\checkmark$	2	Allow ECF from incorrect V from (a)(i).
b	i	time increases \checkmark (larger <i>C</i> means) more charge required (to reach breakdown pd) or $t = \frac{CV}{I}$ or time \propto capacitance \checkmark	2	Mark sequentially i.e. no explanation mark if effect is wrong.

b	ii	spark is brighter (or lasts for a longer time) ✓ more energy (or charge) is stored or current is larger or spark has more energy ✓	2	Mark sequentially.
---	----	---	---	--------------------

Answers	Additional comments/Guidelines	Mark
$V = V_0 \left(1 - e^{-\frac{t}{RC}} \right)$ with substitution attempted with V_0 being larger than $V \checkmark_1$ Time to charge to 4.0 V = $t_2 = -R_1 C \ln \left(1 - \frac{4}{6} \right)$	NB The answer can be obtained incorrectly by finding the time to charge to 2V using a 4V supply. This approach may only gain the first mark for an attempted use of the equation.	3
OR	Award 0 for a solution using the discharge equation.	
Time to charge to 2.0 V = $t_1 = -R_1C \ln\left(1-\frac{2}{6}\right) \checkmark_2$	Condone R for R1	
	✓ 2 If given in an equation then then time must be the subject or be in a form that is used to obtain mp3	
$t = t_2 - t_1 = -R_1 C \ln\left(\frac{1}{3}\right) - \left\{-R_1 C \ln\left(\frac{2}{3}\right)\right\}$	can be awarded for $t_2 = 1.10 \times R_1 C$ OR $t_1 = 0.41 \times R_1 C$	
$\left(= -R_{\rm I}C\left(\ln\frac{1}{3} - \ln\frac{2}{3}\right) = -R_{\rm I}C\ln\left(\frac{1}{3}\frac{2}{3}\right) = -R_{\rm I}C\ln\left(\frac{1}{3}\frac{2}{3}\right) = -R_{\rm I}C\ln\left(\frac{1}{3}\frac{2}{3}\right) = 0.69R_{\rm I}C$	✓ ₃ Must see 0.69 R_1C for 3 marks.	
OR	• 3 Must see 0.69 $\Lambda_1 C$ for 3 marks. Only award MP3 for $0.69R_1C$ if the	
$= R_1 C \left(1.10 - 0.41 \right) = 0.69 R_1 C \checkmark_3$	solution involves a time difference.	

Answers	Additional comments/Guidelines	Mark
Attempt to find usable data from Figure 9 🗸 1	Method 2 (from individual data points)	4
Determine scaling factor OR Determine $R_1 \checkmark_2$	Possible methods are shown but only final answers	
Calculate Q the charge stored at 4 V or the charging time constant from a valid method \checkmark_3	requested are needed to gain marks. ✓ _{1b} Use of a current and voltage across the resistor,	
Determine C to a value that rounds to 1×10^{-4} (F) to 2 or	e.g. $I = 2.0 \times 10^{-5}$ A and voltage across resistor = 2 V (when capacitor has 4 V)	
more sf (expect to see $1.0 \times 10^{-4} \text{ F}) \checkmark_4$	OR	
Method 1 (from area)	$I = 6.0 \times 10^{-5}$ A and voltage across resistor = 6 V (when capacitor has 0 V)	
✓ _{1a} Attempt at finding area under <i>I</i> - <i>t</i> graph by counting boxes	$\checkmark_{2b} R_1 = \frac{V}{L} = \frac{2.0}{2.0 \times 10^{-5}}$	
$\checkmark_{\rm 2a} 1 \ {\rm cm}^2$ box corresponds to charge $0.5 \times 10^{-5} \ {\rm C}$	1 2.0×10	
\checkmark_{3a} Number of 1 cm ² boxes = 80 (78 to 82)	$OR\left(\frac{V}{I} = \frac{6}{6 \times 10^{-5}}\right) = 1.0 \times 10^5 \ (\Omega)$	
$Q = (80 \times 0.5 \times 10^{-5}) = (3.9 \text{ to } 4.1) \times 10^{-4} \text{ (C)}$	\checkmark_{3b} Charging time constant = R_1C	
$\checkmark_{4a} C = \frac{\text{their } Q}{4}$ = a value that rounds to 1×10^{-4} (F) (≥ 2		
sf required)	Eg using $I = I_0 e^{\frac{-t}{R_1 C}}$ then $R_1 C = \frac{t}{\ln\left(\frac{I_0}{I}\right)}$	
Award MAX 1 for estimating the average current by sight	Substituting $I = 2 \times 10^{-5}$ A and	
and using $C = \frac{II}{V}$.	$I_0 = 6 \times 10^{-5}$ A and $t = 11$ s.	
	OR	
	Graphical method must include evidence from Figure 9	
	charging time constant $(R_1C) = 10.(0)$ (s)	
	$\checkmark_{4b} C = \frac{\text{time constant}}{R_1} = \frac{10.0}{1.0 \times 10^5}$	
	= a value that rounds to 1×10^{-4} (F) (≥ 2 sf required)	

Answers	Additional comments/Guidelines	Mark
Reading of relevant discharge data from Figure 10 provided there is an attempt to use data \checkmark_1	\checkmark_1 From Figure 10 this can be the time taken for the voltage to fall to half its value.	3
A valid substitution of their data into a relevant equation to find R_1 or $R_{\text{Total}} \checkmark_2$	✓ ₂ Finding R_{Total} from Figure 10 4.0 V to 2.0 V in (32 - 11) s using $t_1 = 0.69RC$ allow = 0.7 RC	
$R_2 = R_{\text{Total}} - \text{their } R_1 = 2.0 \times 10^5 \Omega \checkmark_3$	$\frac{1}{2}$ $R_{\text{Total}} = 3.0 \times 10^5 \Omega$	
allow one ecf from either their R_{Total} or their R_1		
When R_1 is derived in an earlier question accept this value of R_1 and allow ecf for R_{total}	Finding <i>R</i> ₁ from Figure 9 6.0 A to 3.0 A in 6.8 s using	
When <i>R</i> ₁ is derived in this question, allow one ecf from either their <i>R</i> _{total} or their <i>R</i> ₁	$t_1 = 0.69RC$ allow = 0.7RC	
	$R_1 = 1.0 \times 10^5 \Omega$	
	OR	
	Using	
	$I = I_o e^{\frac{-i}{R_i C}}$	
	for example, with $I = 2 \times 10^{-5}$ A and	
	$I_0 = 6 \times 10^{-5} \text{ A and } t = 11 \text{ s}$	
	Note R1 may be taken from 05.2 and not use the graph information.	

Question	Answers	Additional Comments/Guidelines	Mark
(a)	(using mass defect = $\Delta m = Z m_p + N m_n - M_{Co}$) $\Delta m = 27 \times 1.00728 + 32 \times 1.00867 - 58.93320 (u) \checkmark$ $\Delta m = 0.5408 (u) \checkmark$ Binding Energy = $0.5408 \times 931.5 = 503.8$ (MeV) \checkmark (CE this mark stands alone for the correct energy conversion even if more circular routes are followed.	Look at use of first equation and if electrons are used or mass of proton and neutron confused score = 0. If subtraction is the wrong way round lose 1 mark. Data may come from rest mass eg m _n =939.551 MeV or 1.675×10^{-27} kg or 1.00867 u. So if kg route used $\Delta m = 8.83 \times 10^{-28}$ kg BE = 7.95 x 10^{-28} J and 497 Mev. Conversion mark (2 nd) may come from a wrong value worked through. 0.47(5)	3
(b)	$(2.52 - 1.76) \times 10^{-13} = 7.6 \times 10^{-14} \text{ J} \checkmark$ 7.6 x 10 ⁻¹⁴ / 1.60 x 10 ⁻¹³ = 0.47 or 0.48 MeV \checkmark (0.475 MeV)	Correct answer scores both marks.	2
(c)	6 (specific wavelengths)	++	1
(d)	(longest wavelength = lowest frequency = smallest energy) $(2.29 \times 10^{-13} - 2.06 \times 10^{-13}) = 2.3 \times 10^{-14} \text{ (J) } \checkmark$ $\lambda (= h c / E) = 6.63 \times 10^{-34} \times 3.00 \times 10^8 / 2.3 \times 10^{-14} \checkmark$ $\lambda = 8.6 - 8.7 \times 10^{-12} \text{ (m) } \checkmark (8.6478 \times 10^{-12} \text{ m})$	Allow a CE in the second mark only if the energy corresponds to an energy gap including those to the ground state. The allowed energy gaps for CE are: 2.29, 2.06, 1.76, 0.53, 0.30 all x 10 ⁻¹³ J Note substitution rather than calculation gains mark. The final mark must be as shown here and not from a CE above.	3

electron is ejected from atom / atom is ionised(B2)to free electronCompton scattering where X-ray scattered by the interaction with (orbital) electron(B2)(B2)Pair production where X-ray photon interacts with the nucleus / atom and an electron and positron are produced(B2)Allow: X-ray X-ray pass atoms	Additional Guidance
[allow one mark for statement and one for explanation] Max 2 B2	ns ejected from metal surface if reference is made ons diffraction B1 through the 'slits' / atomic gap formed by the 31

b		$I = I_0 e^{-\mu x}$ $0.1 = e^{-\mu 3}$	C1	Calculation of µ =0.768 C1
		$0.5 = e^{-\mu x}$ ln 0.5 / ln0.1 = x/3	C1	Substitution into second equation C1
		x = 0.903 (mm)	A1	Allow 0.9 (1sf)
				If question misread and 0.9 used for change $\mu = 0.035$ and x = 19.7 (allow 20) give 2/3
с	(i)	Absorption of X-rays by (silver halide molecules) by a photographic film	(B1)	
		Uses of fluorescent / scintillator/ phosphor	(B1)	
		Photon releases electron (that is accelerated onto a fluorescent screen)	(B1)	
		number of electrons increased /multiplied	(B1)	
		MAX B2	B2	
		QWC: Phosphor / Intensifier/ it converts X-ray photon into increased number of 'visible' photons		
			B1	

More details about X-ray image intensifiers are given on the next page.

	(ii)	Different <u>soft</u> body <u>tissue</u> produce little difference in contrast/attenuation	(B1)	This method produces good contrast for soft tissue /for similar Z values
		(Contrast media with) high atomic number / Z used / iodine or barium (used to give greater contrast)	(B1)	
		liquids injected or swallowed into soft tissue areas / or examples of such	(B1)	
		MAX B2	B2	

More details for Question 6c(i):

An X-ray image intensifier is a device used in medical imaging to convert X-rays into a brighter, visible image, allowing doctors to observe internal body structures in real time. X-rays first pass through the patient and strike an input fluorescent screen, where they are converted into visible light. This light then hits a photocathode, which emits electrons via the photoelectric effect. These electrons are accelerated and focused using electric fields toward a smaller output fluorescent screen. When the high-energy electrons strike this screen, they produce a large number of visible light photons, resulting in a much brighter image than the original. This intensified image can then be viewed directly or captured using a camera for display on a monitor, allowing for clearer imaging with lower X-ray doses.