1.

The line with equation y = 3x + 20 cuts the curve with equation $y = x^2 + 6x + 10$ at the points A and B, as shown in Figure 2.

(a) Use algebra to find the coordinates of A and the coordinates of B.

(5)

The shaded region S is bounded by the line and the curve, as shown in Figure 2.

(b) Use calculus to find the exact area of S.

(7)

Figure 1 shows part of a curve C with equation $y = 2x + \frac{8}{x^2} - 5$, x > 0.

The points P and Q lie on C and have x-coordinates 1 and 4 respectively. The region R, shaded in Figure 1, is bounded by C and the straight line joining P and Q.

(a) Find the exact area of R.

(8)

(b) Use calculus to show that y is increasing for x > 2.

(4)

3.

Figure 3 shows the shaded region R which is bounded by the curve $y = -2x^2 + 4x$ and the line $y = \frac{3}{2}$. The points A and B are the points of intersection of the line and the curve.

Find

(a) the x-coordinates of the points A and B,

(4)

(b) the exact area of R.

(6)

4.

Figure 3

Figure 3 shows a sketch of part of the curve with equation $y = x^3 - 8x^2 + 20x$. The curve has stationary points A and B.

(a) Use calculus to find the x-coordinates of A and B.

(4)

(b) Find the value of $\frac{d^2y}{dx^2}$ at A, and hence verify that A is a maximum.

(2)

The line through B parallel to the y-axis meets the x-axis at the point N. The region R, shown shaded in Figure 3, is bounded by the curve, the x-axis and the line from A to N.

(c) Find
$$\int (x^3 - 8x^2 + 20x) dx$$
.

(3)

(d) Hence calculate the exact area of R.

(5)

5.

Find, giving your answer to 3 significant figures where appropriate, the value of x for which

(a) $3^x = 5$,

(3)

(b) $\log_2(2x+1) - \log_2 x = 2$.

(4)

6.

Solve

(a) $5^x = 8$, giving your answer to 3 significant figures,

(3)

(b) $\log_2(x+1) - \log_2 x = \log_2 7$.

(3)

7.

(i) Write down the value of log6 36.

(1)

(ii) Express $2 \log_a 3 + \log_a 11$ as a single logarithm to base a.

(3)

(a) Find, to 3 significant figures, the value of x for which $8^x = 0.8$.

(2)

(b) Solve the equation

$$2\log_3 x - \log_3 7x = 1$$
.

(4)

9.

Figure 1 shows a sketch of part of the curve C with equation

$$y = x(x-1)(x-5).$$

Use calculus to find the total area of the finite region, shown shaded in Figure 1, that is between x = 0 and x = 2 and is bounded by C, the x-axis and the line x = 2.

(9)