Mathematics

(c)	$30 + F = 120\sin\alpha \mathbf{OR} 30 - F = 120\sin\alpha$	M1 A1	-
	So $F = 42N$ acting up the plane.	A1 (3)

2.

	- h 0.064	DI	11	Б		
(i)	a = k + 0.06t	B1	1.1	E		
	k + 0.06(20) = 1.3	M1	1.1	E	Use of $t = 20$ and $a = 1.3$ in their a	
	k = 1.3 - 1.2 = 0.1	A1	1.1	E		
		[3]				
(ii)		M1*	3.1a	Е	Attempt to integrate – all powers	
					increased by 1 (but not just multiplying	
					by t)	
	$s = 0.05t^2 + 0.01t^3(+c)$	A1ft	1.1	E		
					$s = \frac{1}{2}kt^2 + 0.01t^3$	
		DI			Z Francisco francisco franc	TC - O -t-t- 1 th-r
	$t = 0, s = 0 \Longrightarrow c = 0$	B1	2.1	A	From a correct expression for s	If $c = 0$ stated then
		Dic		-	12 . 201	must give a reason
	t = 20, v = 14	B1ft	1.1	E	12 + 20k	
	$s_1 = 0.05(20)^2 + 0.01(20)^3$	dep*M1	3.4	C	Finding distance travelled after 20 s	
	-1()				(for reference $s_1 = 100$)	
	$25^2 = 14^2 + 2(1.3)s_2$	M1	3.3	Α	Use of $v^2 = u^2 + 2as$ with $v = 25$ and	
	$25 - 14 + 2(1.5)s_2$				a = 1.3 and their u	
	m (1 1) ()					
	Total distance $= s_1 + s_2 = 265 \text{ m}$	A1	2.2a	A	All previous marks must have been	
					awarded	
		[7]				

(a)		k(1+2+3+4+5) (= 1)	M1	3.3	Allow 15k (= 1)				
		$k = \frac{1}{15}$	A1	1.1	May be implied				
		$P(X=3) = 3 \times \frac{1}{15} \text{ or } \frac{3}{15}$ (= 0.2 AG)	A1	2.1	Must see $3 \times \frac{1}{15}$ or $\frac{3}{15}$ and answer 0.2			I	
			[3]						
(b)		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1 [2]	1.2 1.1	M1 for \geq 3 probs correct, ft their k cao. Allow decimals (2 dp) SC: Table with all five probs = 0.2: M1	Allow $X = 0$ or $X = 6$ or $X = 6+$ if prob shown as 0		= 6+	
(c)		Both parts. Allow mixture of methods	[~]						
(c)	(i)	-				Special cases			
						2-way tab	le	All prob = 0.2	
		$\frac{3}{15} \times \frac{4}{15} + \frac{2}{15} \times \frac{5}{15}$ oe				Count 4 pa		0.2 ² +0.2	² M1
		15 15 15 15		3.4	Correct products added, ft their table	But if (b)	M1	But if (b	
						correct:	M0	correct: 1	M0
		× 2	M1	3.1a	2×(Sum of two products of probs)	÷ 25	M1	2×(0.2 ² + Allow wit M1	
		$=\frac{44}{225}$ or 0.196 (3 sf)	A1	1.1	cao	= 0.16	A0	= 0.16	A0
			[3]						
(c)	(ii)	P(one value is 2 & $T = 7$) = $2 \times \frac{2}{15} \times \frac{5}{15}$	M1	3.4	Allow without "2×", ft their table	Count 2 pa	M1	2×0.2^2	M1
		$=\frac{4}{45}$	A1f	1.1	ft their table (except if all probs = 0.2)		A 0	= 0.08	A0
		$\frac{P(\text{one value is } 2 \& T = 7)}{P(T = 7)} \qquad (\frac{\frac{4}{45}}{\frac{44}{225}} \text{ or } = \frac{0.0889}{0.196})$	M1	2.1	Allow any probabilityTheir (c)(i) or their $P(T = 7)$	÷4	M1	<u>0.08</u> 0.16	M1
		$=\frac{5}{11}$ or 0.455 (3 sf)	A1	1.1	cao NB not 0.454	= 0.5	A0	= 0.5	A0
					Eg: If (i) $\frac{22}{225}$, $\frac{2}{45} \div \frac{22}{225} = \frac{5}{11}$ M1A0M1A0				
			[4]						

H ₀ : $\mu = 13.3$, H ₁ : $\mu < 13.3$ $z = \frac{12.48 - 13.3}{\sqrt{12.25/50}} = -1.6566 [p = 0.0488]$	B2 M1 A1
[12.25/50 = 0.245] < -1.645 $[p < 0.05]$	B1
$CV 13.3 - 1.645 \sqrt{\frac{12.25}{50}} = 12.4857$ $12.48 \le CV$	M1 B1 A1
Reject H ₀ . Significant evidence that animals in zoos have shorter expected lifetime	M1 A1ft 7

(a)
$$\begin{bmatrix} P(T > 20) = \end{bmatrix} P\left(Z > \frac{20 - 18}{5}\right) & M1 \\ P(Z > 0.4) = 1 - 0.6554 & M1 \\ = \underline{0.3446} \text{ or awrt } \underline{0.345} & M1 \\ A1 & (3) \\ M1 & M1 \\ M1 & M1 \\ (3) & M1 \\ M1 & M1 \\ M1 & M1 \\ M1 & M1 \\ M1 & M1 \\ (3) & M1 \\ \frac{"(a)"}{P(Z > \frac{15 - 18}{5})} = \frac{"(a)"}{P(Z > -0.6)}, = \frac{"0.3446"}{0.7257} \text{ or } \frac{"0.345"}{0.726} & M1 \\ = 0.47485... = awrt \underline{0.475} & A1 \\ (4) & M1 \\ P(T > d \mid T > 15) = 0.5 \text{ or } P(T < d \mid T > 15) = 0.5 \\ P(T > d \mid T > 15) = 0.5 \text{ or } P(T < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \text{ or } P(1 < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \text{ or } P(1 < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \text{ or } P(1 < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \text{ or } P(1 < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \text{ or } P(1 < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \text{ or } P(1 < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \text{ or } P(1 < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \text{ or } P(1 < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \text{ or } P(1 < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \text{ or } P(1 < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \text{ or } P(1 < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \text{ or } P(1 < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \text{ or } P(1 < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \text{ or } P(1 < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \text{ or } P(1 < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \text{ or } P(1 < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \text{ or } P(1 < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \text{ or } P(1 < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \text{ or } P(1 < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \text{ or } P(1 < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \text{ or } P(1 < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \text{ or } P(1 < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \text{ or } P(1 < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \quad P(T < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \quad P(T < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \quad P(T < d \mid T > 15) = 0.5 \\ P(T < d \mid T > 15) = 0.5 \quad P(T < d \mid T > 15) = 0.5 \\ P(T < d \mid T >$$

6.

5.

(a)	$\tan\theta = \frac{3}{4}$; bearing is 37° (nearest degree)	M1; A1 (2)
(b)		
(i)	$\mathbf{p} = (\mathbf{i} + \mathbf{j}) + t(2\mathbf{i} - 3\mathbf{j})$	M1 A1
(ii)	$\mathbf{q} = (-2\mathbf{j}) + t(3\mathbf{i} + 4\mathbf{j})$	Al
(iii)	PQ = q - p = (-i - 3j) + t(i + 7j)	M1 A1
		(5)
(c)		
(i)	-1+t=0	M1
	t = 1 or 3pm	A1
(ii)	-1 + t = -(-3 + 7t)	M1
	$t = \frac{1}{2}$ or 2.30 pm	A1
		(4)