Exam Questions – Set 4 - Answers

1.

(i)	Correct structure with no extra branches Probs and R and B all correct	B1 B1dep [2]	Allow extra branches with correct 0 & 1 Ignore other probs	ignore probs and R & B
(ii)	$\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3}$	M1	or $\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{1}{3} + \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3}$ NOT $\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3}$	If their tree, eg "without replacement" gives $\frac{2}{3} \times \frac{3}{5} \times \frac{2}{4} \left(= \frac{1}{5} \right)$ M1A0
	$= \frac{8}{27} \text{ or } 0.296 \text{ (3 sf)}$	A1 [2]	No ft from tree for A1	
(iii)	into the 6 cases below and mark accordingly. I NB. Listing Adnan and Beryl separately gains P(Adnan 4 throws and Beryl 1throw), but it co	In these into 3 cases, as in middle column. Other de which case a candidates is using, and use the an armonic of the combined into cases. For example, one from P(Adnan gets RRRB) which scores not see also given, award 1st M1, and possibly 2nd 1 M1 only.	corresponding scheme. e $(\frac{2}{3})^3 \times \frac{1}{3} = \frac{8}{81}$ is correct for or marks by itself.	
	All six cases seen or implied: $2\&1; 3\&2, 3\&1; 4\&3, 4\&2, 4\&1$ or $2\&1; 3\&(<3); 4\&(<4)$ $P(2\&1) = \frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} \qquad \text{or } \frac{2}{27}$ $P(3\&2) = (\frac{2}{3})^2 \times \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} \qquad \text{or } \frac{8}{243}$ $P(3\&1) = (\frac{2}{3})^2 \times \frac{1}{3} \times \frac{1}{3} \qquad \text{or } \frac{4}{81}$ $P(4\&3) = (\frac{2}{3})^3 \times (\frac{2}{3})^2 \times \frac{1}{3}$ $\text{or } (\frac{2}{3})^4 \times (\frac{2}{3})^2 \times \frac{1}{3} + (\frac{2}{3})^3 \times \frac{1}{3} \times (\frac{2}{3})^2 \times \frac{1}{3} \qquad \text{or } \frac{32}{729}$ $P(4\&2) = (\frac{2}{3})^3 \times \frac{2}{3} \times \frac{1}{3}$ $\text{or } (\frac{2}{3})^4 \times \frac{2}{3} \times \frac{1}{3} + (\frac{2}{3})^3 \times \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} \qquad \text{or } \frac{16}{243}$ $P(4\&1) = (\frac{2}{3})^3 \times \frac{1}{3}$	M1	NB Must be clearly part of 3-case method	All four cases soi: B&B RB & RB; RRB & RRB; RRRX & RRRX ie 1&1 or 2&2 or 3&3 or 4&4 M1 $ (\frac{1}{3})^2 + (\frac{2}{3} \times \frac{1}{3})^2 + (\frac{2}{3} \times \frac{2}{3} \times \frac{1}{3})^2 + (\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3})^2 $ or $\frac{1}{9} + \frac{4}{81} + \frac{16}{729} + \frac{64}{729}$ or $\frac{197}{729}$ all correct M1 $ \frac{1}{2}(1 - \frac{197}{729}) \qquad \qquad \text{M1} $ $ \frac{266}{729} \text{ or } 0.365 \text{ (3 sf)} \qquad \qquad \text{A1} $
(iii) cont	$\begin{array}{c} \text{or } (\frac{2}{3})^4 \times \frac{1}{3} + (\frac{2}{3})^3 \times (\frac{1}{3})^2 & \text{or } \frac{8}{81} \\ \\ \text{Correct expressions (or results) for 3 of these 6 probs} \\ \text{Correct expressions (or results) for the other 3 of these 6 probs & no extra cases, and add all 6 cases ie completely correct method } \\ \frac{266}{729} \text{ or } 0.365 \text{ (3 sf)} \\ \text{See next page for more} \\ \\ \frac{2}{27} + \frac{8}{243} + \frac{4}{81} + \frac{32}{2187} + \frac{16}{729} + \frac{8}{243} \text{ oe } \text{M1M0} \\ = \frac{494}{2187} \text{ or } 0.226 & \text{A0} \\ \\ \frac{2}{3} \times \frac{1}{3} + (\frac{2}{3})^2 \times \frac{1}{3} + (\frac{2}{3})^3 \times \frac{1}{3} + (\frac{2}{3})^4 \\ \text{or } \frac{2}{3} \times \frac{1}{3} + (\frac{2}{3})^2 \times \frac{1}{3} + (\frac{2}{3})^3 \times \frac{1}{3} + \frac{1}{3} \\ \\ \text{or } \frac{2}{3} \times \frac{1}{3} + \frac{2}{3} \times \frac{1}{3} + (\frac{2}{3})^2 \times \frac{1}{3} + (\frac{2}{3})^3 \times \frac{1}{3} \\ \\ \text{or } \frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} + (\frac{2}{3})^2 \times \frac{1}{3} + (\frac{2}{3})^3 \times \frac{1}{3} \\ \\ \text{or } \frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} + (\frac{2}{3})^2 \times \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} \\ \\ \text{or } \frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} + (\frac{2}{3})^2 \times \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} \\ \\ \text{or } \frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} + (\frac{2}{3})^2 \times \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} \\ \\ \text{or } \frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} + (\frac{2}{3})^2 \times \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} \\ \\ \text{or } \frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} + (\frac{2}{3})^3 \times \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} \\ \\ \text{or } \frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} + (\frac{2}{3})^3 \times \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} \\ \\ \text{or } \frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} + (\frac{2}{3})^3 \times \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} \\ \\ \text{or } \frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} + (\frac{2}{3})^3 \times \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} \\ \\ \text{or } \frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} + (\frac{2}{3})^3 \times \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} \\ \\ \text{or } \frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} \\ \\ \text{or } \frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} \\ \\ \text{or } \frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} \\ \\ \text{or } \frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} \\ \\ \text{or } \frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} \\ \\ \text{or } \frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \\ \\ \text{or } \frac{2}{3} \times \frac{1}{3} \times $	M1 M1 A1 [4]	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} {\bf NB} \ \frac{2}{3} \times \frac{1}{3} = \frac{2}{9} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

2.

 				10 10	_ L
(i)	(a)	Binomial seen or implied	B1	by tables or ¹⁰ C ₃ or ¹⁰ C ₇	or by $0.25^a \times 0.75^b$ $(a+b=10)$
		$0.7759 - 0.5256 \text{ or } {}^{10}\text{C}_3 \times (1 - 0.25)^7 \times 0.25^3$	M1		
		= 0.250 (3 sf)	A1	Allow 0.25	
			[3]		
(i)	(b)	1 – 0.5256 or	M1	or $P(X = 3,4,5,6,7,8,9,10)$ all correct terms	NOT 1 - 0.7759 (P(X>3) from table)
		$1 - ((1 - 0.25)^{10} + 10(1 - 0.25)^{9} \times 0.25$			
		$+ {}^{10}\text{C}_2(1 - 0.25)^8 \times 0.25^2$		Allow 10C8 instead of 10C2	
		= 0.4744 or 0.474 (3 sf)	A1		
			[2]		
(ii)		0.4744 or 0.474) or 0.5256 or 0.526 seen	M1	Their (i)(b) seen, or result of 1-(i)(b) seen	eg B(6, 0.474) or $P(X \ge 3) = 0.474$
		1 – (1 – "0.4744") ⁶ oe	M1	or $P(X = 1,2,3,4,5,6)$ all correct terms seen	
		= 0.979 (3 sf)	A1f	ft from (i)(b)	
			[3]		

3.

(i)	(a)	Binomial seen or implied	M1	by use of table or ${}^{9}C_{6}$ or $(\frac{2}{3})^{p}(\frac{1}{3})^{q}$ $(p+q=9)$	Eg 0.6228 seen
		0.6228 - 0.3497	M1	${}^{9}C_{6}(\frac{1}{3})^{3}(\frac{2}{3})^{6}$	
		= 0.273 (3 sf)	A1	1792 6561	
			[3]		
(i)	(b)	0.3497 or 0.350 (3 sf)	B1	NB 0.3498 (from 0.6228 - 0.273) rounds to 0.350 so B1	
			[1]		
(ii)		27 seen	B1	not necessarily in a statement	
		B(27, $\frac{2}{3}$) seen or implied	M1		
		$^{27}C_{18}(\frac{1}{3})^9(\frac{2}{3})^{18}$	M1	or attempt eg $P(X_1 = 1) \times P(X_2 = 8) \times P(X_3 = 9),$ $P(X_1 = 2) \times P(X_2 = 7) \times P(X_3 = 9),$ $P(X_1 = 3) \times P(X_2 = 6) \times P(X_3 = 9),$ etc >3 sets with $X_1 + X_2 + X_3 = 18$ (not nec'y added) M1	NB P($X_1 = 6$) × P($X_2 = 6$) × P($X_3 = 6$) = 0.273 ³ = 0.0203 M0M0A0 $\frac{55}{729}$ (= 0.0754) M0M0A0
		= 0.161 (3 sf)	A1 [4]		

4.

(i)	(A)	X~B(15, 0.85)	M1	For $0.85^{12} \times 0.15^3$
		P(exactly 12 germinate) = $\binom{20}{4} \times 0.25^4 \times 0.75^{16}$	M1	For $\binom{15}{12} \times p^{12} \times q^3$
		= 0.2184	A1	CAO
		OR	OR	
		from tables: 0.3958 – 0.1773	M2	For 0.3958 - 0.1773
		= 0.2185	A1	CAO
			[3]	
(i)	(B)	$P(X < 12) = P(X \le 11) = 0.1773$	M1	For $P(X \le 11)$ or $P(\le 11)$
				(With no extras)
			A1	CAO (as final answer)
				May see alternative method:
				0.3958 - 0.2185 = 0.1773
				0.3958 - their wrong answer
				to part (i) scores M1A0
1	I		I	

(i)	Only 784 trees and 810 > 784	E1 [1]	2.4	or other similar	
(ii)	eg Each no. not independent of previous no. Each no. is related to the next	El	2.3	Allow 2nd digit of each no. is 1st of next Consecutive nos share two digits	or similar correct Digits are re-used
		[1]			
				Ignore all else	
(iii)	H_0 : $\mu = 4.2$	Bl	1.1	Allow other letters except X or \overline{X}	
	H_1 : $\mu \le 4.2$ where μ is mean height of trees (in the wood)	B1	2.5	One error, eg undefined μ or 2-tail: B0B1	
	$\overline{X} \sim N(4.2, \frac{0.8^2}{50})$ and $\overline{X} < 4.0$ or $\overline{X} \le 4.0$	M 1	3.3	Stated or implied Allow $\overline{X} > 4.0$ or $\overline{X} = 4.0$	$\Phi^{-1}(0.98)$ (= 2.054)
	$P(\overline{X} < 4.0) = 0.038549$ or 0.039	Al	3.4	BC Allow 0.038 NB 0.038 implies M1A1	$4.2 - 2.054 \times \frac{0.8}{\sqrt{50}}$ (= 3.968)
	Compare 0.02	Al	1.1	dep P(\overline{X} < 4.0) attempted	comp their 3.968 with 4.0
	Do not reject H ₀	M1	2.2b	Allow Accept H_0 dep $P(\overline{X} \le 4.0)$ attempted	Can be implied by conclusion
	There is insufficient evidence that mean height of these trees in the wood is less than 4.2m.	Alf	3.5a	In context, not definite; eg "Mean height not less than 4.2m": A0	
		[7]			

6.

				_	
(i)	$a(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16}) = 1$ soi	M1	3.1a	or $\frac{16}{31}(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16})=1$ oe seen	
	$a = \frac{16}{21}$	Al	1.1	correctly obtained	
	31	[2]			
(ii)	$P(X=1, 3 \text{ or } 5) = \frac{21}{31} \text{ Or } 0.677 \text{ or } 0.68 \text{ (2 sf)}$	B1	1.1a		
	31	[1]			
(iii)	P(sum odd) = P(OE) + P(EO)				
	$=2\times\frac{21}{31}\times(1-\frac{21}{31})$	M1	2.1	or correct "long" method	Allow without "2 ×"
	$=\frac{420}{961}$ or 0.437 or 0.44 (2 sf)	Al	1.1		
	901	[2]			
(iv)	P(Sum > 8 & odd) = P(Sum = 9) = $P(4, 5) + P(5, 4)$			or P(> 8) × P(O > 8)	
	$= \frac{2}{31} \times \frac{1}{31} + \frac{1}{31} \times \frac{2}{31} \qquad (= \frac{4}{961})$	M1	1.1a	$=\frac{5}{961}\times\frac{4}{5}$	Correct method
	$\frac{P(\text{Sum} > 8 \& \text{odd})}{P(\text{Sum odd})}$	М1	2.4	Attempt ft their (iii) and their P(Sum > 8 & odd)	
	= ' 4/961 ' + ' 420 '				
	$=\frac{1}{105}$ or 0.00952 or 0.0095 (2 sf)	Al	1.1	cao NB $\frac{2}{961} \div \frac{210}{961} = \frac{1}{105}$ M0M1A0	
		[3]			
(v)	$S_{\infty} = \frac{p}{1 - 0.5} = 1$	M1	3.4		
	P(X=1) = 0.5	A1 [2]	3.4	Correct ans, no working M1A1	
(vi)	Eg Y. (Y takes all values, but) X cannot be > 5 Eg X because > 5 is very unlikely	B1 [1]	3.5b	oe, eg Y. It may take more than 5 attempts or "limited no." oe instead of 5	