Physics

1.				
а		94; proton number; neutron	3	3
b	i	$N = N_{A}m/M = 6 \times 10^{23} \times 2.5 \times 10^{-10}/0.241 = 6.2 \times 10^{14}$	2	2
		or 2.5 x 10 ⁻¹⁰ / 241 x 1.67 x 10 ⁻²⁷		
	ii	$0.693/(480 \times 3.15 \times 10^7) = 4.58 \times 10^{-11} (s^{-1})$	1	1
	iii	A = λ N = 4.6 x 10 ⁻¹¹ x 6.2 x10 ¹⁴ ; = 2.9 x 10 ⁴ ; Bq or s ⁻¹	3	3
	iv	use A = 2.9 x 10 ⁴		
		$dN = 2.9 \times 10^4 dt = 6.2 \times 10^{12}$; $dt = 6.2 \times 10^{12} / 2.9 \times 10^4 = 2.1 \times 10^8$		
		S		
		or use N = $N_o e^{-\lambda t}$	3	3
		In N/N₀ = -λt; -0.01 = -4.6 x 10 ⁻¹¹ t; t = 2.2 x 10 ⁸ s		
С	i	alpha particles stopped by the walls of container/few cm of air	1	1
	ii	interacts strongly with/ionises matter; so if ingested will damage gut,	2	2
		etc		

Quest	ion	Answer Marks		Guidance		
(a)		no: of neutrons = 142	B1			
(b)	(i)	$(5.6 \text{ MeV} =) 5.6 \times \frac{10^6}{1.6} \times \frac{1.6 \times 10^{-19}}{1.6 \times 10^{-13}}$ energy = 8.96×10^{-13} (J)	M1 A0	Allow : $5.6 \times 1.6 \times 10^{-13}$		
	(ii)	$\frac{1}{2} \times 6.65 \times 10^{-27} \times v^2 = 8.96 \times 10^{-13}$ $v = \sqrt{\frac{2 \times 8.96 \times 10^{-13}}{6.65 \times 10^{-27}}}$ speed = 1.6 × 10 ⁷ (m s ⁻¹)	C1 A1	Answer to 3 sf is 1.64×10^7 (m s ⁻¹) Note : The answer is 1.65×10^7 (m s ⁻¹) if 9×10^{-13} (J) is used		
(c)	(i)	activity = $\frac{62}{8.96 \times 10^{-13}}$ activity = 6.92×10^{13} (Bq)	C1 A0	Allow: activity = $\frac{62}{9 \times 10^{-13}}$ (= 6.89 × 10 ¹³ Bq) Possible ecf from (b)(i)		
	(ii)	$\lambda = \frac{0.693}{T}$ $\lambda = \frac{0.693}{88 \times 3.16 \times 10^{7}}$ decay constant = 2.49 × 10 ⁻¹⁰ (s ⁻¹) or 2.5 × 10 ⁻¹⁰ (s ⁻¹)	C1 A1	Note: $ln2 = 0.693$ Allow: 1 mark for using 88 years and getting an answer of 7.9×10^{-3}		
	(iii)	$1 A = \lambda N$ $N = \frac{6.92 \times 10^{13}}{2.49 \times 10^{-10}}$ number = 2.78 × 10 ²³ or 2.8 × 10 ²³ 2 mass = $\frac{2.78 \times 10^{23}}{6.02 \times 10^{23}} \times 0.24$ mass = 0.11 (kg)	C1 A1 B1	Possible ecf from (c)(ii) Note: $7 \times 10^{13}/2.5 \times 10^{-10} = 2.8 \times 10^{23}$ Possible ecf for mass from incorrect value for number of nuclei		

C	Question		Answer		Guidance
	(a)		The neutrons interact with other uranium (nuclei) / the neutrons cause further (fission) reactions	B1	Not: neutrons interact with uranium <u>atoms</u> / <u>molecules</u> / <u>particles</u>
	(b)		Fuel rod: Contain the <u>uranium</u> (nuclei) / fissile material	B1	Show annotation on Scoris Not 'contains fuel'
			Control rods: Absorb (some of the) neutrons	B1	
			<i>Controlled chain reaction:</i> The control rods are inserted into the reactor so as to allow (on average) one neutron from previous reaction to cause subsequent fission (AW)	B1	QWC mark
			Moderator : Slows down the (fast-moving) neutrons / lowers the KE of (fast moving) neutrons / makes the (fast moving) neutrons into thermal neutrons	B1	
			Slow moving neutrons have a greater chance of causing fission / of being absorbed (by U-235) / sustaining chain reaction	B1	Allow: Fast moving neutrons are captured (easily) by uranium-238 (nuclei leaving insufficient number of nuclei for fission / chain reaction) for the last B1 mark
	(c)	(i)	power = $3.0 \times 10^{9}/0.22$ power = 1.36×10^{10} (W) or 1.4×10^{10} (W)	B1	
		(ii)	power = 1.36×10^{10} (W) or 1.4×10^{10} (W) energy = $1.36 \times 10^{10} \times 8.64 \times 10^{4}$ energy = 1.18×10^{15} (J) or 1.2×10^{15} (J)	B1	Possible ecf from (c)(i)
		(iii)	(number of reactions per day) = $\frac{1.18 \times 10^{15}}{3.2 \times 10^{-11}}$	C1	Possible ecf from (c)(ii)
			mass = $\frac{1.18 \times 10^{15}}{3.2 \times 10^{-11}} \times 3.9 \times 10^{-25}$ mass = 14.4 (kg) or 14 (kg)	A1	Note : Using 1.2×10^{15} (J) gives an answer of 14.6 (kg); allow 15 (kg)

B1

B1

Allow: 'Nuclear waste can have long half life'

(d)

Causes ionisation

Nuclear waste is (radio)active for a long time (AW)

4.

a b	i	E = V/d ;= $40 \times 10^3/6 \times 10^4 = 6.7 \times 10^7$; N C ⁻¹ or V m ⁻¹ one closed loops through primary passing through iron core and secondary; second line along same path not touching/crossing,	3 1 1	3	
	ii	etc., all magnetic flux (created by primary current) passes through iron core/ low reluctance path (so links both coils)/AW	1		
		(magnetic flux = BA and) magnetic flux linkage = BAn ;	1		
		the secondary coil has a different number/many more turns than the primary so flux linkage is different max 2	1		
	iii	voltage is only induced across spark gap when the magnetic flux is changing	1		
	iv 1	the shorter the time the greater the voltage; because V α rate of	1		
		change of flux linkage	1		
	2	$V_p/V_s = n_p/n_s$ (in an ideal transformer); so larger n_s is relative to	1		
		n _p the larger the secondary voltage	1	9	

Quest	ion	Answer		Guidance
(a)	(i)	Correct direction of force at A (and marked F)	B1	
	(ii)	The force is perpendicular to velocity / motion (hence no work done on the electron) or No (component of) acceleration / force in direction of velocity / motion (hence no work done on electron) or No distance moved in the direction of the force	B1	
(b)		$F = \frac{mv^{2}}{r}$ force = $\frac{9.11 \times 10^{-31} \times (6.0 \times 10^{7})^{2}}{0.24}$ force = 1.4×10^{-14} (N)	C1 A1	Note: Answer to 3sf is 1.37×10^{-14} (N) Allow: 1 mark for 1.4×10^{n} ; n \neq -14 (POT error)
(c)		F = BQv 1.37 × 10 ⁻¹⁴ = B × 1.60 × 10 ⁻¹⁹ × 6.0 × 10 ⁷ B = 1.4 × 10 ⁻³ (T)	C1 A1	Possible ecf from (b) Note: Answer to 3 sf is 1.43×10^{-3} (T) for 1.37×10^{-14} (N) Note: Using 1.4×10^{-14} (N) gives 1.46×10^{-3} (T) Note: Using $B = mv / Qr$ gives 1.42×10^{-3} (T)
(d)		Using $(E =) mc^2$ and $(E =) \frac{hc}{\lambda}$ (QWC) $2 \times mc^2 = 2 \times \frac{hc}{\lambda}$ or $mc^2 = \frac{hc}{\lambda}$ or $mc = \frac{h}{\lambda}$ Correct substitution (any subject) $\lambda = 2.4 \times 10^{-12}$ (m)	B1 C1 A1	Eg: $2 \times 9.11 \times 10^{-31} \times (3.0 \times 10^8)^2 = 2 \times \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{\lambda}$ Answer to 3 sf is 2.43×10^{-12} (m) Allow: 1 mark for 1.21×10^{-12} (m) or 4.86×10^{-12} (m) for the C1A1 marks

6.

Q	Question		Answer	Marks	Guidance
	(a)	(i)	$f = \frac{1}{T} = \frac{1}{10 \times 10^{-3}}$ frequency = 100 (Hz)	B1	
		(ii)	$2.0 \times 10^{-2} = B \times 1.6 \times 10^{-3} \times 400$	C1	
			$B = \frac{2.0 \times 10^{-2}}{1.6 \times 10^{-3} \times 400}$	C1	
			$B = 3.1 \times 10^{-2} (T)$	A1	Allow: 2 mark for 3.1×10^{n} ; n \neq -2 (POT error) Answer to 3 sf is 3.13×10^{-2} (T) Special case: 12.5 scores 1 mark; number of turns omitted
		(iii)	(e.m.f. = -) rate of change of flux linkage	B1	Allow: $E = (-) \frac{\Delta(N\phi)}{\Delta t}$ or (e.m.f. =) gradient
			$\underline{Tangent}$ drawn on Fig. 3.1 at 2.5 (ms) or 7.5 (ms) or 12.5 (ms)	B1	
			Values substituted to determine the gradient. The gradient must be 12.5 \pm 1.0 (V)	B1	Alternative: maximum e.m.f. = $2\pi f \times$ maximum flux linkageC1 C1 maximum e.m.f. = $2\pi \times 100 \times 2 \times 10^{-2}$ C1 C1 A1
	(b)		$P = \frac{V^2}{R}$ $P = \frac{12^2}{150}$ power = 0.96 (W)	C1 A1	Possible ecf from (a)(iii)

Question	۱	Expected Answers		Additional guidance
(a)		Electromotive force is the energy transferred (from one form of energy) to <u>electrical per</u> unit charge	B1	Allow: 'electrical energy (gained) per unit charge' Not: electrical energy per coulomb
(b)		Magnetic flux is the product of the (magnetic) flux density and the area (normal to the field)	B1	Allow: $\phi = BA$, where $B =$ (magnetic) flux density and $A = \text{area. If } \phi = BA \cos \theta$ is used, then θ must be defined as the angle (between the normal to the plane of the area and the magnetic field) Do not allow 'field strength' for 'flux density'
(c)	(i)	A changing (magnetic) flux is produced (in the primary coil / in the iron core) The iron core links this (magnetic) flux /(magnetic) flux density to the secondary coils	B1 B1	Allow: A changing (magnetic) flux density is produced (in the primary coil) but not ' <i>changing (magnetic) field</i> '
		The changing (magnetic) flux / (magnetic) flux density through secondary induces e.m.f. (in secondary coils)	B1	Allow: The rate of change of (magnetic) flux (linkage) induces an e.m.f. (in the secondary coil)
	(ii)	Any <u>one</u> from: More coils / turns on secondary Less coils / turns on primary Laminate the core	B1	Not: Increase frequency of alternating supply
(d)	(i)	$\frac{n_{\rm s}}{4200} = \frac{12}{230} \qquad \text{(Any subject)}$	C1 A1	Note: A bald answer 219 or 220 scores 2 marks

		Less coils / turns on primary Laminate the core		······································
(d)	(i)	$\frac{n_s}{4200} = \frac{12}{230}$ (Any subject) number of turns = 219 or 220	C1 A1	Note: A bald answer 219 or 220 scores 2 marks
	(ii)	current = $(12.0 - 11.8) / 0.35$ current = 0.57 (A) $P = VI$ or $P = I^2 R$ or $P = V^2 / R$	C1 A1 C1	
		$P = 0.2 \times 0.57$ or $P = 0.57^2 \times 0.35$ or $P = 0.2^2 / 0.35$ power = 0.114 (W) or 0.11 (W)	A1	Possible e.c.f. from (ii)1