Selected Questions – Set 5 (OCR)

1. Sirius dwar	s A and B are binary stars in our galaxy at a distance of 8.6 ly from the Sun. Sirius B is a white f of diameter 12 km and mass 2.0×10^{30} kg.
(a) (Calculate the density of Sirius B.
	density = unit
(b)	The mass of the Sun is the same as Sirius B. The Sun has a diameter of $1.4 \times 10^9 \text{m}$.
	Calculate the ratio
	$\frac{\text{gravitational field strength on the surface of Sirius B}}{\text{gravitational field strength on the surface of the Sun}}.$
	ratio =[2]
(c)	Calculate the parallax angle in arc seconds for Sirius B.
	$1 \text{ pc} = 3.1 \times 10^{16} \text{ m}$

parallax angle = arc seconds [2]

((d)	Sirius A is moving towards the Earth at a relative velocity of 7600 ms ⁻¹ . Calculate the percentage change in the wavelength of a spectral line observed from this star compared with an identical spectral line observed in the laboratory.
		percentage change = % [2]
(6	e)	A student suggests that the distance of Sirius A can be calculated using Hubble's law and the speed given in (d) . Discuss whether this suggestion is correct or incorrect.
		[1]
2. (a)	а	the universe there are about 10^{11} galaxies, each with about 10^{11} stars with each star having mass of about 10^{30} kg. Estimate the attractive gravitational force between two galaxies eparated by a distance of 4×10^{22} m.
		force = N [3]
(b)	E	xplain why the galaxies do not collapse on each other.
	•••	[1]
(c)		

Fig. 10.1 shows some absorption spectral lines of the spectrum of calcium as observed from a source on the Earth and from a distant galaxy.

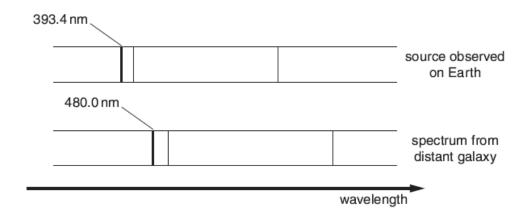


Fig. 10.1

(i)	Describe an absorption spectrum.
	[2]

(ii) Use Fig. 10.1 to calculate the distance of the galaxy in Mpc. The Hubble constant has a value of 50 km s⁻¹ Mpc⁻¹.

distance = Mpc [3]