Physics

$Selected\ Questions-Set\ 5\textbf{-} Answers$

1

Question		Answers	Marks	Guidance
(a)		$V = \frac{4}{3}\pi \times (6 \times 10^{3})^{3} \text{or} V = 9.05 \times 10^{11} \text{ (m}^{3})$ $\text{density} = \frac{2.0 \times 10^{30}}{\frac{4}{3}\pi \times (6 \times 10^{3})^{3}}$	C1	Note : An incorrect equation here for <i>V</i> prevents this and any subsequent marks.
		$\frac{4}{3}\pi \times (6 \times 10^{3})^{3}$ density = 2.2 × 10 ¹⁸ kg m ⁻³	A1	The correct unit must also be included to score this A1 mark. Allow 2 marks for $2.76 \times 10^{17} \frac{\text{kg m}^3}{\text{log}} - 12 \text{ km}$ used instead of 6 km for the radius.
(b))	$g \propto 1/r^2$ ratio = $\left(\frac{1.4 \times 10^9}{12 \times 10^3}\right)^2$ or ratio = $\left(\frac{0.7 \times 10^9}{6 \times 10^3}\right)^2$	C1	
		ratio = 1.4×10^{10}	A1	Note : The answer to 3 sf is 1.36×10^{10} . Allow 1 mark for 7.3×10^{-11} – inverse of the ratio.
(c)		(p=1/d)		
		$d = \frac{8.6 \times 9.5 \times 10^{15}}{3.1 \times 10^{16}}$ (pc) or $d = 2.64$ (pc)	C1	
		p = 0.38 (arc seconds)	A1	Allow full credit for alternative methods.
(d))	$\left(\frac{\Delta\lambda}{\lambda} = \frac{v}{c}\right)$		
		fractional change = $\frac{7600}{3.0 \times 10^8}$	C1	
		percentage change = 2.5 × 10 ⁻³ %	A1	Allow 1 mark for 2.5 × 10 ⁻⁵ (factor of 100 missed out).
(e)		The suggestion is incorrect because Hubble's law applies to (distant receding) galaxies. or The suggestion is incorrect because Hubble's law does	B1	Do not allow this mark if 'Sirius / star is moving <u>towards</u> us' is also included.
		not apply to stars in our own galaxy.		

2.

Question		on	Answer	Marks	Guidance
	(a)		$F = \frac{GMm}{r^2}$	C1	
			force = $\frac{6.67 \times 10^{-11} \times (10^{41})^2}{(4 \times 10^{22})^2}$	C1	Allow : 4×10^{26} (N) or 10^{26} since this is an estimation
			force = 4.2×10^{26} (N)	A1	Allow: 2 marks for 4.2×10^n ; n \neq 26 (POT error)
	(b)		Allow any one from: The galaxies are receding / moving away from each other (because of the big bang) Other galaxies may be pulling them in opposite direction The acceleration is too small to collapse (other than over a very long period of time)	B1	
	(c)	(i)	Dark lines / bands against a background of continuous spectrum	M1 A1	
		(ii)	$\frac{v}{c} = \frac{\Delta \lambda}{\lambda}$ speed = $\frac{86.6}{393.4} \times 3.0 \times 10^{8}$ (Any subject) speed = 6.6×10^{7} (m s ⁻¹) or 66000 (km s ⁻¹) $v = H_{0}d$ $66000 = 50 \times d$ distance = 1300 (Mpc)	C1 C1 A1	Allow: 1 mark for $\frac{86.6}{480.0} \times 3.0 \times 10^8 = 5.41 \times 10^7$ (m s ⁻¹) Allow: 2 marks for 1.3×10^n ; n \neq 3 (POT error) Note: Answer is 1080 (Mpc) if 5.4×10^7 (m s ⁻¹) is used; this value will score 2 marks