Exam Questions – Set 2 - Answers

1.

i	State range of f is $f(x) \ge 3a$ or $y \ge 3a$	B1	Allow $f \ge 3a$ or equiv expression in words but $3a$ to be included
	State range of g is all real numbers or equiv such as $y \in \mathbb{R}$ (real numbers)	B1 [2]	
ii	State function is not $1-1$ or different x -values give same y -value or equiv	B1	no credit for 'no inverse due to modulus' nor for 'cannot be reflected across $y = x$ '
	Obtain form $k(y+4a)$ or $k(x+4a)$	M1	for non-zero constant k
	Obtain $\frac{1}{5}(x+4a)$ or $\frac{1}{5}x + \frac{4}{5}a$	A1 [3]	Must finally be in terms of x
iii	Either Attempt composition of functions the right way round Obtain $5 2x+a +11a=31a$ or equiv	M1 A1	Earned for 5(what they think $f(x)$ is) – $4a$
	Or Apply their g^{-1} to $31a$ Obtain $ 2x+a +3a=7a$ or equiv	M1 A1	
	Either Solve $2x + a = 4a$ and obtain $\frac{3}{2}a$ Solve linear equation in which signs of (their) $2x$ and (their) $4a$ are	B1 FT	Following their $ 2x + a = ka$
	different	M1	Condone other sign slips
	Obtain $-\frac{5}{2}a$	A1	And no others; obtaining $-\frac{5}{2}a$ and then concluding $\frac{5}{2}a$ is A0
	Or Square both sides and obtain $4x^2 + 4ax - 15a^2 = 0$ Solve 3-term quadratic equation to obtain two values	B1 FT M1	Following their $ 2x + a = ka$ Allow M1 if factorisation wrong but expansion gives correct first and third terms; allow M1 if incorrect use of formula involves only one error
	Obtain $-\frac{5}{2}a$, $\frac{3}{2}a$	A1 [5]	And no others; continuing from two correct answers to conclude $\frac{5}{2}a$, $\frac{3}{2}a$ is A0

(i)	Use at least one identity correctly		
	Attempt use of relevant identities in		
	single rational expression		

- B1 angle-sum or angle-difference identity
- M1 not earned if identities used in expression where step equiv to

$$\frac{A+B+C}{D+E+F} = \frac{A}{D} + \frac{B}{E} + \frac{C}{F}$$
 or similar has

been carried out; condone (for M1A1) if signs of identities apparently switched (so that, for example, denominator appears as $\cos \theta \cos \alpha - \sin \theta \sin \alpha +$

 $3\cos\theta + \cos\theta\cos\alpha + \sin\theta\sin\alpha$)

Obtain
$$\frac{2\sin\theta\cos\alpha + 3\sin\theta}{2\cos\theta\cos\alpha + 3\cos\theta}$$

A1 or equiv but with the other two terms from each of num'r and den'r absent

Attempt factorisation of num'r and den'r
Obtain
$$\frac{\sin \theta}{\cos \theta}$$
 and hence $\tan \theta$

A1 5 AG; necessary detail needed

(ii) State or imply form k tan150°

M1 obtained without any wrong method seen

State or imply $\frac{4}{3} \tan 150^{\circ}$

A1 or equiv such as $\frac{12\sin 150^{\circ}}{9\cos 150^{\circ}}$

Obtain
$$-\frac{4}{9}\sqrt{3}$$

A1 3 or exact equiv (such as $-\frac{4}{3\sqrt{3}}$); correct answer only earns 3/3

(iii) State or imply $\tan 6\theta = k$

B1 B1

M1

State $\frac{1}{6} \tan^{-1} k$

M1 using $6\theta = \tan^{-1} k + \text{(multiple of 180)}$

Attempt second value of θ Obtain $\frac{1}{6} \tan^{-1} k + 30^{\circ}$

A1 4 and no other value

3.

M1 Including $\frac{du}{dx} = \text{ or } du = ...dx$; not dx = du

$$5 - x = 4 - u^2$$

Show
$$\int \frac{4-u^2}{2+u} \cdot 2u \, du$$
 reduced to $\int 4u - 2u^2 \, du$ AG

A1 In a fully satisfactory & acceptable manner

Clear explanation of why limits change

B1 e.g. when x = 2, u = 1 and when x = 5, u = 2

$$\frac{4}{3}$$

(ii)(a) 5-x

*B1 1 Accept 4-x-1=5-x (this is not AG)

(b) Show reduction to
$$2 - \sqrt{x-1}$$

$$\int \sqrt{x-1} \, dx = \frac{2}{3} (x-1)^{\frac{3}{2}}$$

$$\left(10 - \frac{2}{3}.8\right) - \left(4 - \frac{2}{3}\right) = \frac{4}{3} \text{ or } 4\frac{2}{3} - 3\frac{1}{3} = \frac{4}{3}$$

B1 Indep of other marks, seen anywhere in (b)

B1 3 Working must be shown

4. (a)	1		
(i)	For $A: T-F=2ma$	M1 A1	
(ii)	For $B: mg - T = ma$	M1 A1	(4)
(b)	$R = 2mg$ $mg(1 - 2\mu) = 3ma$	B1 M1	
	$\frac{g}{3}(1-2\mu)=a$	A1	(3)
(c)			
(0)	$v^2 = \frac{2gh}{3}(1-2\mu)$	M1	
	$v = \sqrt{\frac{2gh}{3}(1 - 2\mu)}$	A1	(2)
(d)			
,u)	$-\mu R = 2ma'$	M1	
	$0^2 = \text{their } u^2 - 2a's$	M1	
	$0 = \frac{2gh}{3}(1 - \frac{2}{3}) - 2(\frac{1}{3}g)s \text{(or } s = (d - h))$	A1 (A1)	
	$s = \frac{1}{3}h$	A1	
	$d = \frac{1}{3}h + h = \frac{4}{3}h$	A1	(5)
(e)			
	A (or B) would not move; OR A (or B) would remain in (limiting) equilibrium; OR the system would remain in (limiting) equilibrium	B1	(1) 15

5.	F 15 N		
	Perpendicular to the slope: $R = 2.7g \cos 40 + 15\cos 40$ = 31.8 (N) or 32 (N)	M1A2 A1 (4)	
b	Parallel to the slope: $F = 2.7g \sin 40 - 15\cos 50$ $(F = 7.366)$ Use of $F = \mu R$ $\mu = \frac{2.7g \sin 40 - 15\cos 50}{R} = 0.23 \text{ or } 0.232$	M1A2 M1 A1 (5)	
c	Component of wt parallel to slope = $2.7g \sin 40^\circ$ (= 17.0) $F_{\text{max}} = 0.232 \times 2.7 \times g \times \cos 40^\circ = 4.7$ (N) 17.0 > 4.70 so the particle moves	B1 M1A1 A1	

0.			
(a)	The random variable $H\sim$ height of females		
	$P(H > 170) = P(Z > \frac{170 - 160}{8}) = [= P(Z > 1.25)]$	M1	
	=1-0.8944	M1	
	= 0.1056 (calc 0.1056498) awrt 0.106 (accept 10.6%)	A1	(3)
(b)	$P(H > 180) = P(Z > \frac{180 - 160}{8}) = [=1 - 0.9938]$	M1	
	= 0.0062 (calc 0.006209) awrt 0.0062 or $\frac{31}{5000}$	A1	
	$[P(H>180 H>170)] = \frac{0.0062}{0.1056}$	M1	
	= 0.0587 (calc 0.0587760) awrt 0.0587 or 0.0588	A1	(4)
(c)	$P(H > h H > 170) (= 0.5)$ or $\frac{P(H > h)}{P(H > 170)} (= 0.5)$	M1	
	$[P(H > h)] = 0.5 \times "0.1056" = 0.0528 \text{ (calc } 0.0528249) or } [P(H < h)] = 0.9472$	A1ft	
	$\frac{h-160}{8} = 1.62 \text{(calc } 1.6180592)$	M1 E	31
	h = awrt 173 cm awrt 173	A1	(5)