Revision - Projectiles

1.

- (a) (i) Define speed.....[1]
 - (ii) Distinguish between speed and velocity.

[2]

(b) Use the equations given below, which represent uniformly accelerated motion in a straight line, to obtain an expression for v in terms of u, a and s only.

$$v = u + at$$

$$s = (u + v)t/2$$

[2]

(c) Fig. 1.1 shows a ball kicked from the top of a cliff with a horizontal velocity of 5.6 m s⁻¹. Air resistance can be neglected.

Fig. 1.1

(i) Show that after 0.90 s the vertical component of the velocity is 8.8 m s⁻¹.

[2]

•	
resultant velocity: magnitude =	m s ⁻¹
angle to the horizontal =	° [4]
(iii) Calculate	
 the vertical distance the ball falls in 0.90 s, 	
the horizontal distance the ball travels in this time.	
1. vertical distance =	m
2. horizontal distance =	m [3]

(ii) Use a vector triangle to determine the resultant velocity of the ball after 0.90 s.

2.

Fig. 3.1 shows the path of a golf ball from the time it ends contact with a golf club, point C, until it hits the ground at G. Assume that there is no air resistance.

Fig. 3.1

The ball leaves the club with a velocity 42 m s⁻¹ at an angle of 36° to the horizontal.

(a) Show that the horizontal component of the velocity is 34 m s⁻¹

[1]

(b) The distance C to G is 170 m. Show that the time taken for the ball to travel from C to G is 5.0 s.

[1]

- (c) Calculate
 - (i) the initial vertical component of the velocity

vertical velocity component = m s-1 [2]

(ii) the maximum height reache	(ii)	the	maximum	height	reache
--------------------------------	------	-----	---------	--------	--------

(d) The ball has a mass of 50 g. Calculate the kinetic energy of the ball at maximum height.

- (e) (i) On Fig. 3.1 sketch the path of the golf ball if air resistance is assumed not to be negligible. [2]
 - (ii) Explain the shape of your sketch.

(1)

3.

(a) A stone is projected horizontally from a cliff. Fig. 3.1 shows the stone at a position A on its path.

Fig. 3.1

The velocity of the stone at position A is 25 m s⁻¹ at 30° to the horizontal.

(i) Show that the horizontal component of the velocity of the stone at A is 22 m s⁻¹.

(ii) Calculate the vertical component of the velocity of the stone at A.

vertical component..... m s-1 [3]

(b) Sketch graphs on the axes on page 9 to show the horizontal and vertical displacements of the stone from the point of horizontal projection to the point of impact.

Ignore air resistance. Numerical values are not required.

horizontal displacement d against time t

- (c) A second stone is released from rest from the top of the cliff. It falls vertically. Sketch graphs on the axes below to show the velocity ν and acceleration a of the stone from the time of release to the time when the stone comes to rest in the sand below. Ignore air resistance. Numerical values are not required.
 - (i) velocity v against time t

4. A ball is thrown by a girl towards a vertical wall.

The girl throws the ball, of mass 5.0 $\times 10^{-2}$ kg, with a velocity of 10 $\,$ ms $^{-1}$ at 53 $^{\circ}$ to the horizontal. In this question, ignore air resistance.

(a) (i) Show that the horizontal component of the velocity is $6.0 \,\mathrm{ms}^{-1}$.

(ii) In moving to the wall, the ball travels 4.9m horizontally and 3.3m vertically. Calculate the time taken for the ball to travel from the girl's hand to the wall.

time =.....s [2]

(iii) Calculate the gain in potential energy of the ball from leaving the girl's hand to when it hits the wall.

gain in potential energy = [3]

[1]

wal	e ball is moving horizontally at 6.0 m s ⁻¹ when it hits the wall. The ball is in contact with the I for 0.16s and rebounds horizontally at 4.0 m s ⁻¹ . culate, for the time that the ball is in contact with the wall
(i)	the change in velocity of the ball
(ii)	$\mbox{change in velocity} = \mbox{m s$^{-1}$} \ \ \mbox{[1]}$ the horizontal acceleration of the ball (assumed to be constant)
(iii)	acceleration = unit
(iv)	magnitude of the force =
	loss in kinetic energy =
	wal Cal (i)