Absolute Zero is as Cold as Stuff Can Get - 0 kelvin

- If you <u>increase</u> the <u>temperature</u> of something, you give its particles more <u>energy</u> — they move about more <u>quickly</u> or <u>vibrate</u> more. In the same way, if you <u>cool</u> a substance down, you're reducing the <u>energy</u> of the particles.
- 2) In theory, the <u>coldest</u> that anything can ever get is -273 °C this temperature is known as <u>absolute zero</u>. At absolute zero, the particles have as little <u>energy</u> in their <u>kinetic</u> stores as it's <u>possible</u> to get they're pretty much still.
- 3) Absolute zero is the start of the Kelvin scale of temperature.
- 4) A temperature change of <u>1 °C</u> is also a change of <u>1 kelvin</u>. The two scales are pretty similar the only difference is where the <u>zero</u> occurs.
- To convert from <u>degrees Celsius to kelvins</u>, just <u>add 273</u>.
 And to convert from <u>kelvins to degrees Celsius</u>, just <u>subtract 273</u>.

	Absolute zero	Freezing point of water	Boiling point of	water
Celsius scale	−273 °C	O °C	100 °C	- There's no degree
Kelvin scale	0 K	273 K	373 K	symbol when you write a temperature in kelvins.
				Just write K, not °K. OK.

°C

10

0

-10

-20

K

283

273

263

253