Magnetic Fields - 1

Exercise A

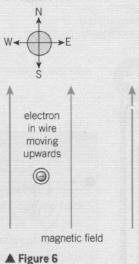
The table below relates the force on a current-carrying wire which is at right angles to the lines of force of a magnetic field and the current. Complete the table below by working out the missing data in each column.

▼ Table 1

	(a)	(b)	(c)	(d)
B/T	0.20 T vertically down	0.20 T vertically down	?	0.1 Thorizontal due?
I/A	3.0 A horizontal due north	?	3.0 A horizontal due north	2.0 A vertically up
I/m	0:040 m	0.040 m	0.040 m	0.040 m
F/N	?	0.036 N horizontal due south	0.024 N horizontal due west	? horizontal due east

- A straight vertical wire of length 0.10 m carries a downward current of 4.0 A in a uniform horizontal magnetic field of flux density 55 mT that acts due north. Determine the magnitude and direction of the force on the wire.
 - A straight horizontal wire of length 50 mm carrying a constant current is in a uniform magnetic field of flux density 140 mT which acts vertically downwards. The wire experiences a force of 28 mN in a direction which is due north. Determine the magnitude and the direction of the current in the wire.
- A rectangular coil of width 60 mm and of length 80 mm has 50 turns. The coil was placed horizontally in a uniform horizontal magnetic field of flux density 85 mT with its shorter side parallel to the field lines. A current of 8.0 A was passed through the coil. Sketch the arrangement and determine the force on each side of the coil.
- The Earth's magnetic field at a certain position on the Earth's surface has a horizontal component of 18 µT due north and a downwards vertical component of 55 µT. Calculate:
 - a the magnitude of the Earth's magnetic field at this position,
 - the magnitude and direction of the force on a vertical wire of length
 0.80 m carrying a current of 4.5 A downwards.

Exercise B


 $e = 1.6 \times 10^{-19} \,\mathrm{C}$

- 1 a In Figure 1, how would the force on the electrons in the magnetic field differ if:
 - i the magnetic field was reversed in direction,
 - ii the magnetic field was reduced in strength,
 - iii the speed of the electrons was increased.
 - **b** Calculate the force on an electron that enters a uniform magnetic field of flux density 150 mT at a velocity of 8.0×10^6 m s⁻¹ at an angle of

i 90°.

ii 0° to the field.

2 Electrons in a vertical wire move upwards at a speed of $2.5 \times 10^{-3} \, \text{m s}^{-1}$ into a uniform horizontal magnetic field of magnetic flux density 95 mT. The field is directed along a line from south to north as shown in Figure 6. Calculate the force on each electron and determine its direction.

- 3 A beam of protons and π^+ mesons moving at the same speed is directed into a uniform magnetic field in the same direction as the field.
 - a Explain why the beam is not deflected by the field.
 - **b** If the particles had been directed into the field in a direction at right angles to the field lines at the same speed, state and explain what effect this would have had on the beam.
- 4 In a Hall probe, electrons passing through the semiconductor experience a force due to a magnetic field.
 - a Explain why a potential difference is created across the semiconductor as a result of the application of the magnetic field.
 - **b** When the magnetic flux density was $90 \, \text{mT}$, each electron moving through the slice experiences a force of $6.4 \times 10^{-20} \, \text{N}$ due to the magnetic field. Calculate:
 - the mean speed of the electrons passing through the slice,
 - ii the magnetic force on each electron if the magnetic flux density is increased to 120 mT.

Exercise C

- $e = 1.6 \times 10^{-19}$ C, $\frac{e}{m}$ for the electron = 1.76 × 10¹¹ C kg⁻¹
- A beam of electrons at a speed of 3.2 × 10⁷ m s⁻¹ is directed into a uniform magnetic field of flux density
 8.5 mT in a direction perpendicular to the field lines.
 The electrons move on a circular orbit in the field.
 - Explain why the electrons move on a circular orbit.
 - ii Calculate the radius of the orbit.
 - The flux density is adjusted until the radius of orbit is 65 mm. Calculate the flux density for this new radius.
- A narrow beam of electrons was directed at a speed of 2.9×10^7 m s⁻¹ into a uniform magnetic field.
 - The beam followed a circular path of radius 35 mm in the magnetic field. Calculate the flux density of the magnetic field.
 - b The speed of the electrons in the beam was halved by reducing the anode voltage. Calculate the new radius of curvature of the beam in the field.

- The first cyclotron, used to accelerate protons, was 0.28 m in diameter and was in a magnetic field of flux density 1.1T.
 - a Show that protons emerged from this cyclotron at a maximum speed of 1.5×10^7 m s⁻¹.
 - b Calculate the maximum kinetic energy, in MeV, of a proton from this accelerator.
 - The mass of a proton = 1.67 \times 10 $^{-27}$ kg, 1 MeV = 1.6 \times 10 $^{-13}$ J
- 4 In a mass spectrometer, a beam of ions at a speed of $7.6 \times 10^4 \, \text{m s}^{-1}$ was directed into a uniform magnetic field of flux density 680 mT.
 - a An ion was deflected in a semi-circular path of diameter 28 mm on to the detector. Calculate the specific charge of the ion.
 - b A different type of ion was deflected onto the same detector when the magnetic flux density was changed to 400 mT. Calculate the specific charge of this ion.