Answers - Revision – Trigonometry (Year 12) - 1

(i)	$\sin^2 x = 1 - \cos^2 x \Rightarrow 2\cos^2 x + \cos x - 1 = 0$	M1		For transforming to a quadratic in cos x
	Hence $(2\cos x - 1)(\cos x + 1) = 0$	M1		For solution of a quadratic in cos x
	$\cos x = \frac{1}{2} \Longrightarrow x = 60^{\circ}$	A1		For correct answer 60°
	$\cos x = -1 \Longrightarrow x = 180^{\circ}$	A1	4	For correct answer 180° [Max 3 out of 4 if any extra answers present in range, or in radians] SR answer only is B1, B1 justification – ie graph or substitution is B2, B2
(ii)	$\tan 2x = -1 \Rightarrow 2x = 135 \text{ or } 315$ Hence $x = 67.5^{\circ} \text{ or } 157.5^{\circ}$	M1 M1		For transforming to an equation of form tan2x = k For correct solution method, i.e. inverse tan followed by division by 2 For correct value 67.5
	Hence x = 07.5 of 157.5	A1	4	For correct value 157.5
	OR	M1		Obtain linear equation in cos 2x or sin 2x
	$\sin^2 2x = \cos^2 2x$	M1		Use correct solution method
	$2\sin^2 2x = 1$ $2\cos^2 2x = 1$	A1 A1		For correct value 67.5 For correct value 157.5
	$\sin 2x = \pm \frac{1}{2}\sqrt{2}$ $\cos 2x = \pm \frac{1}{2}\sqrt{2}$			[Max 3 out of 4 if any extra answers present in
	Hence $x = 67.5^{\circ} \text{ or } 157.5^{\circ}$			range, or in radians] SR answer only is B1, B1
				justification – ie graph or substitution is B2, B2

(a)
$$(x+10=)$$
 60 α $B1$ 120 $(M: 180 - \alpha \text{ or } \pi - \alpha)$ $M1$ $x = 50$ $x = 110$ (or 50.0 and 110.0) (M: Subtract 10) $M1$ A1 (4) (b) $(2x=)$ 154.2 β Allow a.w.r.t. 154 or a.w.r.t. 2.69 (radians) $B1$ 205.8 $(M: 360 - \beta \text{ or } 2\pi - \beta)$ $M1$ $x = 77.1$ $x = 102.9$ $(M: Divide by 2)$ $M1$ A1 (4)

3.

 $(\tan \theta = -2 \Longrightarrow)$

or

(a)
$$\sin(\theta + 30) = \frac{3}{5}$$
 ($\frac{3}{5}$ on RHS) B1
 $\theta + 30 = 36.9$ ($\alpha = AWRT 37$) B1
or = 143.1 (180 - α) M1
 $\frac{\theta = 6.9, 113.1}{2}$ A1cao (4)
(b) $\tan \theta = \pm 2$ or $\sin \theta = \pm \frac{2}{\sqrt{5}}$ or $\cos \theta = \pm \frac{1}{\sqrt{5}}$ B1
 $(\tan \theta = 2 \Rightarrow)$ $\theta = \underline{63.4}$ ($\beta = AWRT 63.4$) B1
or $\underline{243.4}$ (180 + β) M1

 $(180 - \beta)$

(180 + their 116.6) M1

M1

(5)

296.6

 $\theta = 116.6$

(i)	$\sin \theta \tan \theta = \sin \theta \times \frac{\sin \theta}{\cos \theta} = \frac{1 - \cos^2 \theta}{\cos \theta}$	M1 M1	For use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$ For use of $\cos^2 \theta + \sin^2 \theta = 1$
	Hence $1 - \cos^2 \theta = \cos \theta (\cos \theta + 1)$,		
	i.e. $2\cos^2\theta + \cos\theta - 1 = 0$, or equiv	A1	3 For showing given equation correctly
(ii)	$(2\cos\theta - 1)(\cos\theta + 1) = 0$	M1	For solution of quadratic equation in $\cos \theta$
	Hence $\cos \theta = \frac{1}{2}$ or -1	A1	For both values of $\cos \theta$ correct
	So $\theta = 60^{\circ}$, 300°, 180°	A1	For correct answer 60°
		A1	For correct answer 180°
		A1√	5 For a correct non-principal-value answer, following their value of $\cos \theta$ (excluding $\cos \theta = -1$, 0, 1) and no other values for θ .

	1	-	1	
(i)	$\tan x \left(\sin x - \cos x \right) = 6 \cos x$	M1	Use $\tan x = \frac{\sin x}{\cos x}$ correctly once	Must be used clearly at least once - either explicitly or by
	$\tan x \left(\frac{\sin x}{\cos x} - 1 \right) = 6$			writing eg 'divide by $\cos x$ ' at side of solution
	$\tan x (\tan x - 1) = 6$			Allow M1 for any equiv $eg \sin x = \cos x \tan x$
				Allow poor notation eg writing just tan rather than $\tan x$
	$\tan^2 x - \tan x = 6$			
	$\tan^2 x - \tan x - 6 = 0 \mathbf{AG}$	A1	Obtain $tan^2x - tanx - 6 = 0$	Correct equation in given form, including = 0
	tan x tant 0 = 0 AG	Ai		Correct notation throughout so A0 if eg tan rather than
				tanx seen in solution
				tana seen in solution
		[2]		
(ii)	$(\tan x - 3)(\tan x + 2) = 0$	M1	Attempt to solve quadratic in tan	This M mark is just for solving a 3 term quadratic (see
	$\tan x = 3$, $\tan x = -2$		X	guidance sheet for acceptable methods)
				Condone any substitution used, inc $x = \tan x$
	$x = \tan^{-1}(3), x = \tan^{-1}(-2)$	M1	Attempt to solve $\tan x = k$ at least	Attempt tan ⁻¹ k at least once
			once	Not dependent on previous mark so M0M1 possible
				If going straight from $\tan x = k$ to $x =$, then award M1
				only if their angle is consistent with their k
	x = 71.6°, 252°, 117°, 297°	A1	Obtain two correct solutions	Allow 3sf or better
	x = 71.0 , 232 , 117 , 237	AI	Cotam two correct solutions	Must come from a correct method to solve the quadratic
				(as far as correct factorisation or substitution into
				formula)
				Allow radian equivs ie 1.25 / 4.39 / 2.03 / 5.18
				Allow facial equivs is 1.257 4.357 2.037 5.10
		٠		Most new all be in decrease
		A1	Obtain all 4 correct solutions,	Must now all be in degrees Allow 3sf or better
			and no others in range	
				A0 if other incorrect solutions in range 0° – 360° (but
				ignore any outside this range)
				CD If no working shows they allow D1 for each a
				SR If no working shown then allow B1 for each correct
				solution (CDC) (C)
				(max of B3 if in radians, or if extra solns in range).
		[4]		

(a)
$$\tan \theta = 5$$
 B1 (1)

(i)	substitution of $\tan x = \frac{\sin x}{\cos x} \text{ or } \sqrt{1 - \sin^2 x} = \sqrt{\cos^2 x} \text{ or } \cos x$ in given LHS	M1	if no substitution, statements must follow a logical order and the argument must be clear; if one substitution made correctly, condone error in other part of LHS	condone omission of variable throughout for M1 only , but allow recovery from omission of variable at end
	both substitutions seen and completion to $\sin x$ as final answer	A1	NB AG; answer must be stated	M0 if first move is to square one or both sides
			allow consistent use of other variable eg θ for both marks	Simply stating eg $\tan x = \frac{\sin x}{\cos x}$ is
		[2]		insufficient
				Alternatively SC2 for complete argument eg
				$\tan x = \frac{\sin x}{\cos x}$
				$[\tan x \times \cos x = \sin x]$ $\sin^2 x + \cos^2 x = 1$
				$\cos x = \sqrt{1 - \sin^2 x}$ $\tan x = \frac{\sin x}{\sqrt{1 - \sin^2 x}}$
				$ \frac{\sqrt{1-\sin^2 x}}{\tan x \times \sqrt{1-\sin^2 x}} = \sin x \text{ oe} $

0, 180, 360	B1	all 3 required	NB $\sin y = 0$ or $\frac{1}{4}$
14 or 14.47 to 14.5	B1	radians: mark as scheme but deduct one	ignore extra values outside range
		from total	
166 or awrt 165.5	B1	$0, \pi, 2\pi;$	if B3, deduct 1 mark for extra values
		0.25 or 0.253 or awrt 0.2527:	within range
	[3]		
	14 or 14.47 to 14.5	14 or 14.47 to 14.5	14 or 14.47 to 14.5 B1 radians: mark as scheme but deduct one from total 166 or awrt 165.5 B1 0, π, 2π; 0.25 or 0.253 or awrt 0.2527; 2.89 or 2.889 or awrt 2.8889

(i)	$\sin kx$ $y = \sin 2x$	M1 A1	$k > 0$ and $k \neq 1$ must see " $y =$ " at some stage for A1	condone use of other variable condone $f(x) = \sin 2x$
		[2]		
(ii)	sketch of sine curve with period 360° and amplitude 1	В1	for $0 \le x \le 450$; ignore curve outside this range; do not allow sketch of $y = \cos x$ or $y = -\sin x$ for either mark	amplitude, period and centring on $y = -3$ must be clear from correct numerical scale, numerical labelling or comment; strokes on axes insufficient to imply scale: mark intent
	sine curve centred on $y = -3$ and starting at	B1		11 611 1 16 1
	(0, -3)			allow full marks if $y = \sin x$ and
		[2]		$y = \sin x - 3$ seen on same diagram

(i) $\cos BCA = \frac{5^2 + 6^2 - 9}{2 \times 5 \times 6}$	$\frac{9^2}{2} = -1$	M1	For relevant use of the correct cosine formula
$2\times 5\times 6$	3	M1	For attempt to rearrange correct formula
	_	A1	For obtaining the given value correctly
So $\sin BCA = \frac{2}{3}$	¹ 2 ≈ 0.9428	B1	For correct answer for sin BCA in any form
			OR
		M1	For substituting $\cos BCA = -\frac{1}{3}$
		M1	For attempt at evaluation
		A1	For full verification
		B1 4	For correct answer for sin BCA in any form
(ii) Angles BCA and CA	AD are equal	B1	For stating, using or implying the equal angles
So $\sin ADC = \frac{5}{15}$ s	$\sin CAD = \frac{1}{3} \times \frac{1}{3} \sqrt{8} = \frac{2}{9} \sqrt{2}$	M1	For correct use of the sine rule in \triangle ADC
		,	(sides must be numerical, angles may still be in
$\Rightarrow ADC = 18.3^{\circ}$		A1√	letters)
		A1 4	For a correct equation from their value in (i)
		8	For correct answer, from correct working

(i)	$\frac{LB}{\sin 65^{\circ}} = \frac{200}{\sin 35^{\circ}}$ OR $\frac{LA}{\sin 80^{\circ}} = \frac{200}{\sin 35^{\circ}}$	M1	For correct use of the sine rule in ΔLAB (could be in ii)
	$\Rightarrow LB = 316.0198 \Rightarrow LA = 343.39$	A1	For correct value of (or explicit expression for) LB or LA
Цопо	$n = I R \sin 90^{\circ} = 211 m$ $n = I A \sin 65 = 211 m$	M1	,
Helic	$p = LB \sin 80^\circ = 311 \text{m}$ $p = LA \sin 65 = 311 \text{m}$	IVII	For calculation of perpendicular distance
		A1 4	For correct distance (rounding to) 311
(ii)	$LC^{2} = 200^{2} + 316^{2} - 2 \times 200 \times 316 \times \cos 100^{\circ}$ $(cr.LC^{2} = 400^{2} + 343^{2} - 3 \times 400 \times 343 \times \cos 65^{\circ})$	M1	For use of cosine rule in $\triangle LBC$ or LAC
(ii)	$LC^{2} = 200^{2} + 316^{2} - 2 \times 200 \times 316 \times \cos 100^{\circ}$ $\left(or \ LC^{2} = 400^{2} + 343^{2} - 2 \times 400 \times 343 \times \cos 65^{\circ}\right)$	M1 A1√	For use of cosine rule in $\triangle LBC$ or LAC For correct unsimplified numerical expression for LC^2
(ii)			

	1		T	1
(i)	$area = \frac{1}{2} \times 8 \times 10 \times \sin 65^{\circ}$	M1	Attempt area of triangle using	Must be correct formula, including $\frac{1}{2}$
			$\frac{1}{2}ab\sin\theta$	Allow if evaluated in radian mode (gives 33.1)
				If using $\frac{1}{2} \times b \times h$, then must be valid use of trig to find h
	= 36.3	A1	Obtain 36.3, or better	If > 3sf, allow answer rounding to 36.25 with no errors seen
		[2]		
(ii)	$BD^2 = 8^2 + 10^2 - 2 \times 8 \times 10 \times \cos 65^\circ$	M1	Attempt use of correct cosine rule	Must be correct cosine rule Allow M1 if not square rooted, as long as BD^2 seen Allow if evaluated in radian mode (gives 15.9) Allow if correct formula is seen but is then evaluated incorrectly - using $(8^2 + 10^2 - 2 \times 8 \times 10) \times \cos 65^\circ$ gives 1.30 Allow any equiv method, as long as valid use of trig
	BD = 9.82	A1 [2]	Obtain 9.82, or better	If > 3sf, allow answer rounding to 9.817 with no errors seen
(iii)	$\frac{BC}{\sin 65} = \frac{8}{\sin 30}$	M1	Attempt use of correct sine rule (or equiv)	Must get as far as attempting BC , not just quoting correct sine rule Allow any equiv method, as long as valid use of trig including attempt at any angles used If using their BD from part(ii) it must have been a valid attempt (eg M0 for $BD = 8 \sin 65$, $BC = \frac{BD}{\sin 30} = 14.5$)
	BC = 14.5	A1	Obtain 14.5, or better	If >3sf, allow answer rounding to 14.5 with no errors in method seen In multi-step solutions (eg using 9.82) interim values may be slightly inaccurate – allow A1 if answer rounds to 14.5
		[2]		