Answers - Revision – Trigonometry (Year 12) - 1 | (i) | $\sin^2 x = 1 - \cos^2 x \Rightarrow 2\cos^2 x + \cos x - 1 = 0$ | M1 | | For transforming to a quadratic in cos x | |------|---|----------|---|--| | | Hence $(2\cos x - 1)(\cos x + 1) = 0$ | M1 | | For solution of a quadratic in cos x | | | $\cos x = \frac{1}{2} \Longrightarrow x = 60^{\circ}$ | A1 | | For correct answer 60° | | | $\cos x = -1 \Longrightarrow x = 180^{\circ}$ | A1 | 4 | For correct answer 180° [Max 3 out of 4 if any extra answers present in range, or in radians] SR answer only is B1, B1 justification – ie graph or substitution is B2, B2 | | (ii) | $\tan 2x = -1 \Rightarrow 2x = 135 \text{ or } 315$
Hence $x = 67.5^{\circ} \text{ or } 157.5^{\circ}$ | M1
M1 | | For transforming to an equation of form tan2x = k For correct solution method, i.e. inverse tan followed by division by 2 For correct value 67.5 | | | Hence x = 07.5 of 157.5 | A1 | 4 | For correct value 157.5 | | | OR | M1 | | Obtain linear equation in cos 2x or sin 2x | | | $\sin^2 2x = \cos^2 2x$ | M1 | | Use correct solution method | | | $2\sin^2 2x = 1$ $2\cos^2 2x = 1$ | A1
A1 | | For correct value 67.5 For correct value 157.5 | | | $\sin 2x = \pm \frac{1}{2}\sqrt{2}$ $\cos 2x = \pm \frac{1}{2}\sqrt{2}$ | | | [Max 3 out of 4 if any extra answers present in | | | Hence $x = 67.5^{\circ} \text{ or } 157.5^{\circ}$ | | | range, or in radians] SR answer only is B1, B1 | | | | | | justification – ie graph or substitution is B2,
B2 | (a) $$(x+10=)$$ 60 α $B1$ 120 $(M: 180 - \alpha \text{ or } \pi - \alpha)$ $M1$ $x = 50$ $x = 110$ (or 50.0 and 110.0) (M: Subtract 10) $M1$ A1 (4) (b) $(2x=)$ 154.2 β Allow a.w.r.t. 154 or a.w.r.t. 2.69 (radians) $B1$ 205.8 $(M: 360 - \beta \text{ or } 2\pi - \beta)$ $M1$ $x = 77.1$ $x = 102.9$ $(M: Divide by 2)$ $M1$ A1 (4) **3.** $(\tan \theta = -2 \Longrightarrow)$ or (a) $$\sin(\theta + 30) = \frac{3}{5}$$ ($\frac{3}{5}$ on RHS) B1 $\theta + 30 = 36.9$ ($\alpha = AWRT 37$) B1 or = 143.1 (180 - α) M1 $\frac{\theta = 6.9, 113.1}{2}$ A1cao (4) (b) $\tan \theta = \pm 2$ or $\sin \theta = \pm \frac{2}{\sqrt{5}}$ or $\cos \theta = \pm \frac{1}{\sqrt{5}}$ B1 $(\tan \theta = 2 \Rightarrow)$ $\theta = \underline{63.4}$ ($\beta = AWRT 63.4$) B1 or $\underline{243.4}$ (180 + β) M1 $(180 - \beta)$ (180 + their 116.6) M1 M1 (5) 296.6 $\theta = 116.6$ | (i) | $\sin \theta \tan \theta = \sin \theta \times \frac{\sin \theta}{\cos \theta} = \frac{1 - \cos^2 \theta}{\cos \theta}$ | M1
M1 | For use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$
For use of $\cos^2 \theta + \sin^2 \theta = 1$ | |------|--|----------|---| | | Hence $1 - \cos^2 \theta = \cos \theta (\cos \theta + 1)$, | | | | | i.e. $2\cos^2\theta + \cos\theta - 1 = 0$, or equiv | A1 | 3 For showing given equation correctly | | (ii) | $(2\cos\theta - 1)(\cos\theta + 1) = 0$ | M1 | For solution of quadratic equation in $\cos \theta$ | | | Hence $\cos \theta = \frac{1}{2}$ or -1 | A1 | For both values of $\cos \theta$ correct | | | So $\theta = 60^{\circ}$, 300°, 180° | A1 | For correct answer 60° | | | | A1 | For correct answer 180° | | | | A1√ | 5 For a correct non-principal-value answer, following their value of $\cos \theta$ (excluding $\cos \theta = -1$, 0, 1) and no other values for θ . | | | 1 | - | 1 | | |------|---|-----|---|--| | (i) | $\tan x \left(\sin x - \cos x \right) = 6 \cos x$ | M1 | Use $\tan x = \frac{\sin x}{\cos x}$ correctly once | Must be used clearly at least once - either explicitly or by | | | $\tan x \left(\frac{\sin x}{\cos x} - 1 \right) = 6$ | | | writing eg 'divide by $\cos x$ ' at side of solution | | | $\tan x (\tan x - 1) = 6$ | | | Allow M1 for any equiv $eg \sin x = \cos x \tan x$ | | | | | | Allow poor notation eg writing just tan rather than $\tan x$ | | | $\tan^2 x - \tan x = 6$ | | | | | | $\tan^2 x - \tan x - 6 = 0 \mathbf{AG}$ | A1 | Obtain $tan^2x - tanx - 6 = 0$ | Correct equation in given form, including = 0 | | | tan x tant 0 = 0 AG | Ai | | Correct notation throughout so A0 if eg tan rather than | | | | | | tanx seen in solution | | | | | | tana seen in solution | | | | [2] | | | | (ii) | $(\tan x - 3)(\tan x + 2) = 0$ | M1 | Attempt to solve quadratic in tan | This M mark is just for solving a 3 term quadratic (see | | | $\tan x = 3$, $\tan x = -2$ | | X | guidance sheet for acceptable methods) | | | | | | Condone any substitution used, inc $x = \tan x$ | | | | | | | | | $x = \tan^{-1}(3), x = \tan^{-1}(-2)$ | M1 | Attempt to solve $\tan x = k$ at least | Attempt tan ⁻¹ k at least once | | | | | once | Not dependent on previous mark so M0M1 possible | | | | | | If going straight from $\tan x = k$ to $x =$, then award M1 | | | | | | only if their angle is consistent with their k | | | | | | | | | x = 71.6°, 252°, 117°, 297° | A1 | Obtain two correct solutions | Allow 3sf or better | | | x = 71.0 , 232 , 117 , 237 | AI | Cotam two correct solutions | Must come from a correct method to solve the quadratic | | | | | | (as far as correct factorisation or substitution into | | | | | | formula) | | | | | | Allow radian equivs ie 1.25 / 4.39 / 2.03 / 5.18 | | | | | | Allow facial equivs is 1.257 4.357 2.037 5.10 | | | | ٠ | | Most new all be in decrease | | | | A1 | Obtain all 4 correct solutions, | Must now all be in degrees Allow 3sf or better | | | | | and no others in range | | | | | | | A0 if other incorrect solutions in range 0° – 360° (but | | | | | | ignore any outside this range) | | | | | | CD If no working shows they allow D1 for each a | | | | | | SR If no working shown then allow B1 for each correct | | | | | | solution (CDC) (C) | | | | | | (max of B3 if in radians, or if extra solns in range). | | | | | | | | | | | | | | | | [4] | | | (a) $$\tan \theta = 5$$ B1 (1) | (i) | substitution of $\tan x = \frac{\sin x}{\cos x} \text{ or } \sqrt{1 - \sin^2 x} = \sqrt{\cos^2 x} \text{ or } \cos x$ in given LHS | M1 | if no substitution, statements must follow a
logical order and the argument must be
clear; if one substitution made correctly,
condone error in other part of LHS | condone omission of variable
throughout for M1 only , but allow
recovery from omission of variable
at end | |-----|--|-----|--|--| | | both substitutions seen and completion to $\sin x$ as final answer | A1 | NB AG; answer must be stated | M0 if first move is to square one or both sides | | | | | allow consistent use of other variable eg θ for both marks | Simply stating eg $\tan x = \frac{\sin x}{\cos x}$ is | | | | [2] | | insufficient | | | | | | Alternatively SC2 for complete argument eg | | | | | | $\tan x = \frac{\sin x}{\cos x}$ | | | | | | $[\tan x \times \cos x = \sin x]$
$\sin^2 x + \cos^2 x = 1$ | | | | | | $\cos x = \sqrt{1 - \sin^2 x}$ $\tan x = \frac{\sin x}{\sqrt{1 - \sin^2 x}}$ | | | | | | $ \frac{\sqrt{1-\sin^2 x}}{\tan x \times \sqrt{1-\sin^2 x}} = \sin x \text{ oe} $ | | 0, 180, 360 | B1 | all 3 required | NB $\sin y = 0$ or $\frac{1}{4}$ | |---------------------|---------------------|--|---| | | | | | | 14 or 14.47 to 14.5 | B1 | radians: mark as scheme but deduct one | ignore extra values outside range | | | | from total | | | 166 or awrt 165.5 | B1 | $0, \pi, 2\pi;$ | if B3, deduct 1 mark for extra values | | | | 0.25 or 0.253 or awrt 0.2527: | within range | | | | | | | | [3] | | | | | 14 or 14.47 to 14.5 | 14 or 14.47 to 14.5 | 14 or 14.47 to 14.5 B1 radians: mark as scheme but deduct one from total 166 or awrt 165.5 B1 0, π, 2π; 0.25 or 0.253 or awrt 0.2527; 2.89 or 2.889 or awrt 2.8889 | | (i) | $\sin kx$ $y = \sin 2x$ | M1
A1 | $k > 0$ and $k \neq 1$
must see " $y =$ " at some stage for A1 | condone use of other variable condone $f(x) = \sin 2x$ | |------|---|----------|--|---| | | | [2] | | | | (ii) | sketch of sine curve with period 360° and amplitude 1 | В1 | for $0 \le x \le 450$; ignore curve outside this range;
do not allow sketch of $y = \cos x$ or $y = -\sin x$ for either mark | amplitude, period and centring on $y = -3$ must be clear from correct numerical scale, numerical labelling or comment; strokes on axes insufficient to imply scale: mark intent | | | sine curve centred on $y = -3$ and starting at | B1 | | 11 611 1 16 1 | | | (0, -3) | | | allow full marks if $y = \sin x$ and | | | | [2] | | $y = \sin x - 3$ seen on same diagram | | (i) $\cos BCA = \frac{5^2 + 6^2 - 9}{2 \times 5 \times 6}$ | $\frac{9^2}{2} = -1$ | M1 | For relevant use of the correct cosine formula | |--|---|------|---| | $2\times 5\times 6$ | 3 | M1 | For attempt to rearrange correct formula | | | _ | A1 | For obtaining the given value correctly | | So $\sin BCA = \frac{2}{3}$ | ¹ 2 ≈ 0.9428 | B1 | For correct answer for sin BCA in any form | | | | | OR | | | | M1 | For substituting $\cos BCA = -\frac{1}{3}$ | | | | M1 | For attempt at evaluation | | | | A1 | For full verification | | | | B1 4 | For correct answer for sin BCA in any form | | (ii) Angles BCA and CA | AD are equal | B1 | For stating, using or implying the equal angles | | So $\sin ADC = \frac{5}{15}$ s | $\sin CAD = \frac{1}{3} \times \frac{1}{3} \sqrt{8} = \frac{2}{9} \sqrt{2}$ | M1 | For correct use of the sine rule in \triangle ADC | | | | , | (sides must be numerical, angles may still be in | | $\Rightarrow ADC = 18.3^{\circ}$ | | A1√ | letters) | | | | A1 4 | For a correct equation from their value in (i) | | | | 8 | For correct answer, from correct working | | (i) | $\frac{LB}{\sin 65^{\circ}} = \frac{200}{\sin 35^{\circ}}$ OR $\frac{LA}{\sin 80^{\circ}} = \frac{200}{\sin 35^{\circ}}$ | M1 | For correct use of the sine rule in ΔLAB (could be in ii) | |-------|--|-----------|--| | | $\Rightarrow LB = 316.0198 \Rightarrow LA = 343.39$ | A1 | For correct value of (or explicit expression for) LB or LA | | Цопо | $n = I R \sin 90^{\circ} = 211 m$ $n = I A \sin 65 = 211 m$ | M1 | , | | Helic | $p = LB \sin 80^\circ = 311 \text{m}$ $p = LA \sin 65 = 311 \text{m}$ | IVII | For calculation of perpendicular distance | | | | A1 4 | For correct distance (rounding to) 311 | | | | | | | (ii) | $LC^{2} = 200^{2} + 316^{2} - 2 \times 200 \times 316 \times \cos 100^{\circ}$ $(cr.LC^{2} = 400^{2} + 343^{2} - 3 \times 400 \times 343 \times \cos 65^{\circ})$ | M1 | For use of cosine rule in $\triangle LBC$ or LAC | | (ii) | $LC^{2} = 200^{2} + 316^{2} - 2 \times 200 \times 316 \times \cos 100^{\circ}$ $\left(or \ LC^{2} = 400^{2} + 343^{2} - 2 \times 400 \times 343 \times \cos 65^{\circ}\right)$ | M1
A1√ | For use of cosine rule in $\triangle LBC$ or LAC
For correct unsimplified numerical expression for LC^2 | | (ii) | | | | | | 1 | | T | 1 | |-------|---|--------|--|--| | (i) | $area = \frac{1}{2} \times 8 \times 10 \times \sin 65^{\circ}$ | M1 | Attempt area of triangle using | Must be correct formula, including $\frac{1}{2}$ | | | | | $\frac{1}{2}ab\sin\theta$ | Allow if evaluated in radian mode (gives 33.1) | | | | | | If using $\frac{1}{2} \times b \times h$, then must be valid use of trig to find h | | | = 36.3 | A1 | Obtain 36.3, or better | If > 3sf, allow answer rounding to 36.25 with no errors seen | | | | [2] | | | | (ii) | $BD^2 = 8^2 + 10^2 - 2 \times 8 \times 10 \times \cos 65^\circ$ | M1 | Attempt use of correct cosine rule | Must be correct cosine rule Allow M1 if not square rooted, as long as BD^2 seen Allow if evaluated in radian mode (gives 15.9) Allow if correct formula is seen but is then evaluated incorrectly - using $(8^2 + 10^2 - 2 \times 8 \times 10) \times \cos 65^\circ$ gives 1.30 Allow any equiv method, as long as valid use of trig | | | BD = 9.82 | A1 [2] | Obtain 9.82, or better | If > 3sf, allow answer rounding to 9.817 with no errors seen | | (iii) | $\frac{BC}{\sin 65} = \frac{8}{\sin 30}$ | M1 | Attempt use of correct sine rule
(or equiv) | Must get as far as attempting BC , not just quoting correct sine rule Allow any equiv method, as long as valid use of trig including attempt at any angles used If using their BD from part(ii) it must have been a valid attempt (eg M0 for $BD = 8 \sin 65$, $BC = \frac{BD}{\sin 30} = 14.5$) | | | BC = 14.5 | A1 | Obtain 14.5, or better | If >3sf, allow answer rounding to 14.5 with no errors in method seen In multi-step solutions (eg using 9.82) interim values may be slightly inaccurate – allow A1 if answer rounds to 14.5 | | | | [2] | | |