## Revision – Trigonometry (Year 12) - 1

1.

Solve each of the following equations, for  $0^{\circ} \le x \le 180^{\circ}$ .

(i) 
$$2\sin^2 x = 1 + \cos x$$
. [4]

$$\mathbf{(ii)} \ \sin 2x = -\cos 2x. \tag{4}$$

2.

Solve, for  $0 \le x \le 180^{\circ}$ , the equation

(a) 
$$\sin(x+10^\circ) = \frac{\sqrt{3}}{2}$$
,

**(4)** 

(b)  $\cos 2x = -0.9$ , giving your answers to 1 decimal place.

**(4)** 

3.

(a) Find all the values of  $\theta$ , to 1 decimal place, in the interval  $0^{\circ} \le \theta < 360^{\circ}$  for which

$$5 \sin (\theta + 30^{\circ}) = 3$$
.

**(4)** 

(b) Find all the values of  $\theta$ , to 1 decimal place, in the interval  $0^{\circ} \le \theta < 360^{\circ}$  for which

$$\tan^2 \theta = 4$$
.

**(5)** 

4.

(i) Prove that the equation

$$\sin\theta\tan\theta = \cos\theta + 1$$

can be expressed in the form

$$2\cos^2\theta + \cos\theta - 1 = 0.$$
 [3]

(ii) Hence solve the equation

$$\sin \theta \tan \theta = \cos \theta + 1$$
,

giving all values of  $\theta$  between  $0^{\circ}$  and  $360^{\circ}$ .

[5]

(a) Show that the equation

$$5\cos^2 x = 3(1 + \sin x)$$

can be written as

$$5\sin^2 x + 3\sin x - 2 = 0.$$
 (2)

(b) Hence solve, for  $0 \le x < 360^{\circ}$ , the equation

$$5\cos^2 x = 3(1 + \sin x),$$

giving your answers to 1 decimal place where appropriate.

**(5)** 

6.

(i) Show that the equation

$$\sin x - \cos x = \frac{6\cos x}{\tan x}$$

can be expressed in the form

$$\tan^2 x - \tan x - 6 = 0. [2]$$

(ii) Hence solve the equation 
$$\sin x - \cos x = \frac{6 \cos x}{\tan x}$$
 for  $0^{\circ} \le x \le 360^{\circ}$ . [4]

7.

(a) Given that  $\sin \theta = 5 \cos \theta$ , find the value of  $\tan \theta$ .

**(1)** 

(b) Hence, or otherwise, find the values of  $\theta$  in the interval  $0 \le \theta \le 360^{\circ}$  for which

$$\sin \theta = 5 \cos \theta$$

giving your answers to 1 decimal place.

**(3)** 

8.

(i) Show that, when x is an acute angle,  $\tan x \sqrt{1 - \sin^2 x} = \sin x$ . [2]

(ii) Solve  $4\sin^2 y = \sin y$  for  $0^{\circ} \le y \le 360^{\circ}$ . [3]

(i) Fig. 5 shows the graph of a sine function.



Fig. 5

State the equation of this curve.

[2]

(ii) Sketch the graph of  $y = \sin x - 3$  for  $0^{\circ} \le x \le 450^{\circ}$ .

[2]

[4]

10.



In the diagram, ABCD is a quadrilateral in which AD is parallel to BC. It is given that AB = 9, BC = 6, CA = 5 and CD = 15.

- (i) Show that  $\cos BCA = -\frac{1}{3}$ , and hence find the value of  $\sin BCA$ .
- (ii) Find the angle ADC correct to the nearest  $0.1^{\circ}$ . [4]

11.



A landmark L is observed by a surveyor from three points A, B and C on a straight horizontal road, where AB = BC = 200 m. Angles LAB and LBA are  $65^{\circ}$  and  $80^{\circ}$  respectively (see diagram). Calculate

- (i) the shortest distance from L to the road, [4]
- (ii) the distance LC. [3]

12.



The diagram shows triangle ABC, with AB = 8 cm, angle  $BAC = 65^{\circ}$  and angle  $BCA = 30^{\circ}$ . The point D is on AC such that AD = 10 cm.

- (i) Find the area of triangle ABD. [2]
- (ii) Find the length of BD. [2]
- (iii) Find the length of BC. [2]