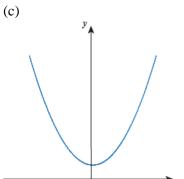
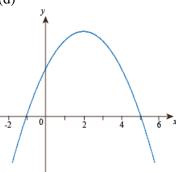
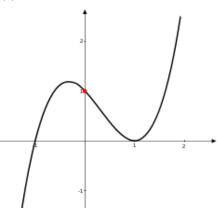
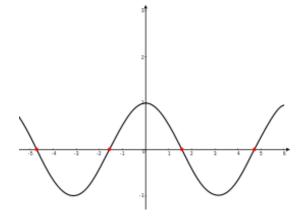

Differentiation 1 (Year 12)


Exercise A

Sketch a possible graph for the gradient of each of the following functions.


(a)




(d)

(e)

(f)

F is the point with co-ordinates (3, 9) on the curve with equation $y = x^2$.

- **a** Find the gradients of the chords joining the point *F* to the points with coordinates:
 - i (4, 16)
- ii (3.5, 12.25)
- iii (3.1, 9.61)

- iv (3.01, 9.0601)
- $\mathbf{v} = (3+h, (3+h)^2)$
- **b** What do you deduce about the gradient of the tangent at the point (3, 9)?

3.

G is the point with coordinates (4, 16) on the curve with equation $y = x^2$.

- **a** Find the gradients of the chords joining the point *G* to the points with coordinates:
 - **i** (5, 25)
- **ii** (4.5, 20.25)
- iii (4.1, 16.81)

- iv (4.01, 16.0801)
- $\mathbf{v} (4+h, (4+h)^2)$
- **b** What do you deduce about the gradient of the tangent at the point (4, 16)?
- 4. Use differentiation from first principles to find the gradient of each of the following functions at the given points.
 - (a) $y = x^2 + 3x$ at the point (2, 10)
 - (b) $y = 2x^2 5$ at the point (3, 13)
 - (c) $y = x^3$ at the point (-1, -1)
 - (d) $y = x^3 2x^2 + 5$ at the point (0, 5)
- 5. Find the derivatives of the following functions using differentiation from first principles.
 - (a) $y = x^2 + 3x$
 - (b) $y = 3x^2 4x + 5$
 - (c) $y = x^4$
 - (d) $y = 5x^3$
 - (e) $y = x^3 + 2x^2 + 4x 6$

Exercise B

Differentiate each of the following with respect to x.

7
$$x^{-3}$$

9
$$\frac{1}{v^2}$$

10
$$\frac{1}{x^5}$$

11
$$\frac{1}{\sqrt[3]{x}}$$

12
$$\frac{1}{\sqrt{x}}$$

13
$$\frac{x^2}{x^4}$$

14
$$\frac{x^3}{x^2}$$

15
$$\frac{x^6}{x^3}$$

16
$$x^3 \times x^6$$

17
$$x^2 \times x^3$$

18
$$x \times x^2$$

Exercise C

1 Find $\frac{dy}{dx}$ when y equals:

a
$$2x^2 - 6x + 3$$

b
$$\frac{1}{2}x^2 + 12x$$

c
$$4x^2 - 6$$

d
$$8x^2 + 7x + 12$$

e
$$5 + 4x - 5x^2$$

2 Find the gradient of the curve whose equation is

a
$$y = 3x^2$$
 at the point (2, 12)

b
$$y = x^2 + 4x$$
 at the point (1, 5)

c
$$y = 2x^2 - x - 1$$
 at the point (2, 5) **d** $y = \frac{1}{2}x^2 + \frac{3}{2}x$ at the point (1, 2)

d
$$y = \frac{1}{2}x^2 + \frac{3}{2}x$$
 at the point (1, 2)

e
$$y = 3 - x^2$$
 at the point (1, 2)

f
$$y = 4 - 2x^2$$
 at the point $(-1, 2)$

3 Find the y-coordinate and the value of the gradient at the point P with x-coordinate 1 on the curve with equation $y = 3 + 2x - x^2$.

4 Find the coordinates of the point on the curve with equation $y = x^2 + 5x - 4$ where the gradient is 3.

5 Find the gradients of the curve $y = x^2 - 5x + 10$ at the points A and B where the curve meets the line y = 4.

6 Find the gradients of the curve $y = 2x^2$ at the points C and D where the curve meets the line y = x + 3.

Exercise D

1 Use standard results to differentiate:

a
$$x^4 + x^{-1}$$

b
$$\frac{1}{2}x^{-2}$$

c
$$2x^{-\frac{1}{2}}$$

- **2** Find the gradient of the curve with equation y = f(x) at the point A where:
 - **a** $f(x) = x^3 3x + 2$ and A is at (-1, 4)
- **b** $f(x) = 3x^2 + 2x^{-1}$ and A is at (2, 13)
- 3 Find the point or points on the curve with equation y = f(x), where the gradient is zero:
 - **a** $f(x) = x^2 5x$

b $f(x) = x^3 - 9x^2 + 24x - 20$

c $f(x) = x^{\frac{3}{2}} - 6x + 1$

d $f(x) = x^{-1} + 4x$

Exercise E

1 Use standard results to differentiate:

a
$$2\sqrt{x}$$

b
$$\frac{3}{x^2}$$

c
$$\frac{1}{3x^3}$$

d
$$\frac{1}{3}x^3(x-2)$$

$$e^{\frac{2}{x^3}} + \sqrt{x}$$

$$\mathbf{f} \sqrt[3]{x} + \frac{1}{2x}$$

$$\mathbf{g} \frac{2x+3}{x}$$

h
$$\frac{3x^2-6}{x}$$

$$\mathbf{i} \quad \frac{2x^3 + 3x}{\sqrt{x}}$$

$$\mathbf{j} \ \ x(x^2 - x + 2)$$

k
$$3x^2(x^2 + 2x)$$

1
$$(3x-2)\left(4x+\frac{1}{x}\right)$$

Find the gradient of the curve with equation y = f(x) at the point A where:

a
$$f(x) = x(x+1)$$
 and A is at $(0,0)$

b
$$f(x) = \frac{2x-6}{x^2}$$
 and A is at (3,0)

c
$$f(x) = \frac{1}{\sqrt{x}}$$
 and A is at $(\frac{1}{4}, 2)$

d
$$f(x) = 3x - \frac{4}{x^2}$$
 and A is at (2, 5)

Exercise F

Find $\frac{dy}{dr}$ and $\frac{d^2y}{dr^2}$ when y equals:

1
$$12x^2 + 3x + 8$$

1
$$12x^2 + 3x + 8$$
 2 $15x + 6 + \frac{3}{x}$ 3 $9\sqrt{x} - \frac{3}{x^2}$

$$3 \quad 9\sqrt{x} - \frac{3}{x^2}$$

4
$$(5x+4)(3x-2)$$
 5 $\frac{3x+8}{x^2}$

$$5 \quad \frac{3x+8}{x^2}$$

Exercise G

1 Find
$$\frac{d\theta}{dt}$$
 where $\theta = t^2 - 3t$

2 Find
$$\frac{dA}{dr}$$
 where $A = 2\pi r$

3 Find
$$\frac{dr}{dt}$$
 where $r = \frac{12}{t}$

4 Find
$$\frac{dv}{dt}$$
 where $v = 9.8t + 6$

5 Find
$$\frac{dR}{dr}$$
 where $R = r + \frac{5}{r}$

6 Find
$$\frac{dx}{dt}$$
 where $x = 3 - 12t + 4t^2$

7 Find
$$\frac{dA}{dx}$$
 where $A = x(10 - x)$

Exercise H

1 Find the equation of the tangent to the curve:

a
$$y = x^2 - 7x + 10$$
 at the point (2, 0)

b
$$y = x + \frac{1}{x}$$
 at the point $(2, 2\frac{1}{2})$

c
$$y = 4\sqrt{x}$$
 at the point (9, 12)

d
$$y = \frac{2x - 1}{x}$$
 at the point (1, 1)

e
$$y = 2x^3 + 6x + 10$$
 at the point $(-1, 2)$

f
$$y = x^2 + \frac{-7}{x^2}$$
 at the point $(1, -6)$

2 Find the equation of the normal to the curves:

a
$$y = x^2 - 5x$$
 at the point (6, 6)

b
$$y = x^2 - \frac{8}{\sqrt{x}}$$
 at the point (4, 12)

3 Find the coordinates of the point where the tangent to the curve $y = x^2 + 1$ at the point (2, 5) meets the normal to the same curve at the point (1, 2).

4 Find the equations of the normals to the curve $y = x + x^3$ at the points (0, 0) and (1, 2), and find the coordinates of the point where these normals meet.

5 For $f(x) = 12 - 4x + 2x^2$, find an equation of the tangent and normal at the point where x = -1 on the curve with equation y = f(x).

