Short Assessment

Time Allowed: 25 minutes Total Marks: 26

1.

$$f(x) = 12 \cos x - 4 \sin x.$$

Given that $f(x) = R \cos(x + \alpha)$, where $R \ge 0$ and $0 \le \alpha \le 90^{\circ}$,

(a) find the value of R and the value of α .

(4)

(b) Hence solve the equation

$$12\cos x - 4\sin x = 7$$

for $0 \le x < 360^\circ$, giving your answers to one decimal place.

(5)

(c) (i) Write down the minimum value of $12 \cos x - 4 \sin x$.

(1)

(ii) Find, to 2 decimal places, the smallest positive value of x for which this minimum value occurs.

(2)

2.

(a) Show that

$$\frac{\cos 2x}{\cos x + \sin x} \equiv \cos x - \sin x, \quad x \neq (n - \frac{1}{4})\pi, \ n \in \mathbb{Z},$$
(2)

(b) Solve, for $0 \le \theta \le 2\pi$,

$$\sin 2\theta = \cos 2\theta$$
,

giving your answers in terms of π .

(4)

3.

The functions f and g are defined with their respective domains by

$$f(x) = x^2$$
 for all real values of x

$$g(x) = \frac{1}{x+2}$$
 for real values of x , $x \neq -2$

(b) (i) Find
$$fg(x)$$
. (1 mark)

(ii) Solve the equation
$$fg(x) = 4$$
. (3 marks)

(ii) The inverse of g is
$$g^{-1}$$
. Find $g^{-1}(x)$. (2 marks)

- End of Test -	