
1.

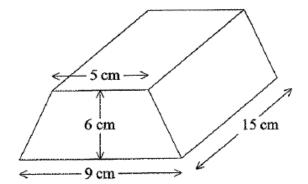
Revision Exercise 2

On the grid, enlarge triangle T with a scale factor of 3 and centre (2, 1).

(Total 3 marks)

2.

(a) Factorise 9p + 15


(1)

(b) Factorise q^2-4q

(1)

(c) Factorise $x^2 - 3x - 10$

(2)

Diagram NOT accurately drawn

PORT I		•		
The	diagram	shows	а	prism.
				1

The cross section of the prism is a trapezium.

The lengths of the parallel sides of the trapezium are 9 cm and 5 cm.

The distance between the parallel sides of the trapezium is 6 cm.

The length of the prism is 15 cm.

(a) Work out the area of the trapezium.

										cm ²
										(2)

(b) Work out the volume of the prism.

							•				cm ²
											(2)

4.
In a sale at *Bargain Buys*, all the normal prices are reduced by 15%.
The normal price of a printer is £240

(a) Work out the sale price of the printer.

£					•				•	•	•	•		٠.	
											((3)	þ

In th	he	same	sale.	the	sale	price	of a	laptop	computer	is	£663
-------	----	------	-------	-----	------	-------	------	--------	----------	----	------

í	(d)	Work	out the	normal	price	of the	lanton	computer.
١	\mathbf{v}_{j}	I WOLK	out uic	полин	DYYCC	Or un	ιαριυρ	compater.

£	
	(3)

(a)	Solve	the	ineous	litv	2x -	3 <	- 4

		•						•					٠.	٠.	
											((2)	ŀ

(b) n is a positive integer.

Write down all the values of n which satisfy the inequality 2n-3 < 5

	•	•		-	•	*			 		 	 								. ,		٠.		,	,	٠	
																							C	2	7	١	

6.

The table gives information about the ages, in years, of the 80 members of a sports club.

Age (t years)	Frequency
10 < t ≤ 20	8
$20 < t \leqslant 30$	38
30 < <i>t</i> ≤ 40	28
$40 < t \le 50$	4
50 < t ≤ 60	2

Work out an estimate for the mean age of the 80 members.	
	years (4)
7.	
Make W the subject of the formula $h = \sqrt{\frac{W}{I}}$	
	<i>W</i> =
	(Total 2 marks)
	(LVIII II MILLIS)
8. The size of each exterior angle of a regular polygon is 18°.	
(a) Work out how many sides the polygon has.	

	(2)
(b) Work out the sum of the interior angles of the polygon.	
	(2)

	1	۱	

The height of a hall is 12 m.

A scale model is made of the hall.

The height of the scale model of the hall is 30 cm.

(a) Express the scale of the model in the form 1:n

(3)

The length of the scale model of the hall is 95 cm.

(b) Work out the real length of the hall. Give your answer in metres.

..... m

10.

Solve
$$\frac{x-1}{2} + \frac{2x+3}{4} = 1$$

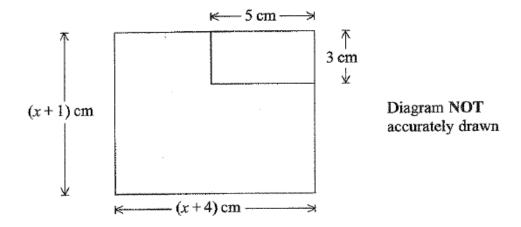
x =

(Total 4 marks)

1	1	
- 1	- 1	

(a)	Express	$\frac{10}{\sqrt{5}}$	in	the	form	$k\sqrt{5}$	where	k is	an	integer
-----	---------	-----------------------	----	-----	------	-------------	-------	------	----	---------

(2)


(b)	Express	$(5+\sqrt{3})^2$	in the form	$a+b\sqrt{3}$	where	a and	b are	integers.
-----	---------	------------------	-------------	---------------	-------	-------	-------	-----------

(2)

12.

Simplify fully
$$\frac{2}{x-1} + \frac{x-11}{x^2 + 3x - 4}$$

(Total 6 marks)

A rectangular piece of card has length (x+4) cm and width (x+1) cm. A rectangle 5 cm by 3 cm is cut from the corner of the piece of card. The remaining piece of card, shown shaded in the diagram, has an area of 35 cm².

(a) Show that $x^2 + 5x - 46 = 0$

(3)

(b) Solve $x^2 + 5x - 46 = 0$ to find the value of x. Give your answer correct to 3 significant figures.

$$x =$$
 (3)

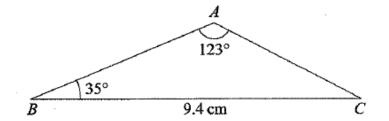
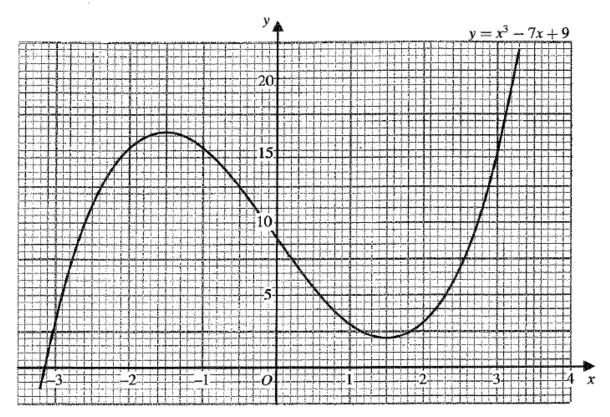


Diagram NOT accurately drawn

BC = 9.4 cm. Angle $BAC = 123^{\circ}$. Angle $ABC = 35^{\circ}$.


(a) Calculate the length of AC.Give your answer correct to 3 significant figures.

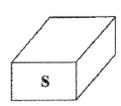
***************************************	cm
	(3)

(b) Calculate the area of triangle ABC.
Give your answer correct to 3 significant figures.

										•
 						•				cm ²
										(3)

Part of the graph of $y = x^3 - 7x + 9$ is shown on the grid.

The graph of $y = x^3 - 7x + 9$ and the line with equation y = k, where k is an integer, have 3 points of intersection.


(a) Find the greatest possible value of the integer k.

k =	***************************************	
		(1)

(b) By drawing a suitable straight line on the grid, find estimates of the solutions of the equation $x^3 - 6x - 2 = 0$.

Give your answers correct to 1 decimal place.

•	••	 ••	٠,	 	 				٠.		٠.		 	 +	••	••		٠.	•	•
																	(3	ŀ	į

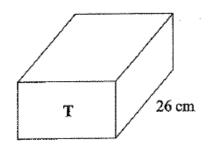


Diagram NOT accurately drawn

Two cuboids, S and T, are mathematically similar.

The total surface area of cuboid S is 157 cm² and the total surface area of cuboid T is 2512 cm².

251	2 cm ² .		
(a)	The length of cuboid T is 26 cm. Calculate the length of cuboid S.		
			cm

(b) The volume of cuboid S is 130 cm³. Calculate the volume of cuboid T.

•	 										cr	n
											(2

(3)