Answers - Coordinate Geometry - Straight Line Graphs

Question	Scheme Marks					
number						
.(a)	$m = \frac{8-2}{11+1} (=\frac{1}{2})$ M1 A1					
	M1 A1 $y-2=\frac{1}{2}(x-1)$ or $y-8=\frac{1}{2}(x-11)$ o.e. M1 $y=\frac{1}{2}x+\frac{5}{2}$ accept exact equivalents A1c.a.o. (4) Gradient of $l_2=-2$					
	M1					
	$y = \frac{1}{2}x + \frac{5}{2}$ accept exact equivalents					
e.g. $\frac{6}{12}$	A1c.a.o. (4)					
(b)	Gradient of $l_2 = -2$					
	M1					
	Equation of l_2 : $y - 0 = -2(x - 10)$ [$y = -2x + 20$]					
	M1 $\frac{1}{2}x + \frac{5}{2} = -2x + 20$					
	M1					
	x = 7 and $y = 6$ depend on all 3					
Ms	A1, A1 (5)					
(c)	$RS^2 = (10-7)^2 + (0-6)^2 (= 3^2 + 6^2)$					
	M1					
	$RS = \sqrt{45} = 3\sqrt{5}$ (*)					
	$RS = \sqrt{45} = 3\sqrt{5}$ (*) A1c.s.o. (2)					
(d)	$PQ = \sqrt{12^2 + 6^2}$, = $6\sqrt{5}$ or $\sqrt{180}$ or $PS = 4\sqrt{5}$ and $SQ = 2\sqrt{5}$ M1,A1 Area = $\frac{1}{2}PQ \times RS = \frac{1}{2}6\sqrt{5} \times 3\sqrt{5}$ dM1					
	M1,A1					
	Area = $\frac{1}{2}PQ \times RS = \frac{1}{2}6\sqrt{5} \times 3\sqrt{5}$					
	dM1					

A1 c.a.o. (4)

2.

(a)
$$y - (-4) = \frac{1}{3}(x - 9)$$
 or $\frac{y - (-4)}{x - 9} = \frac{1}{3}$
 $3y - x + 21 = 0$ (o.e.) (condone 3 terms with integer coefficients e.g. $3y + 21 = x$)

(b) Equation of l_2 is: $y = -2x$ (o.e.)

(b) Equation of
$$l_2$$
 is: $y = -2x$ (o.e.)
Solving l_1 and l_2 : $-6x - x + 21 = 0$
 p is point where $x_p = 3$, $y_p = -6$

$$x_p \text{ or } y_p$$

$$y_p \text{ or } x_p$$
(4)

(a)
$$y = -\frac{3}{2}x(+4)$$
 Gradient = $-\frac{3}{2}$ M1 A1 (2)
(b) $3x + 2 = -\frac{3}{2}x + 4$ $x = ..., \frac{4}{9}$ M1, A1 $y = 3\left(\frac{4}{9}\right) + 2 = \frac{10}{3}\left(=3\frac{1}{3}\right)$ A1 (3)
(c) Where $y = 1$, $l_1: x_A = -\frac{1}{3}$ $l_2: x_B = 2$ M: Attempt one of these M1 A1 Area = $\frac{1}{2}(x_B - x_A)(y_P - 1)$ M1 $= \frac{1}{2} \times \frac{7}{3} \times \frac{7}{3} = \frac{49}{18} = 2\frac{13}{18}$ o.e. A1 (4)

(a)	p = 15, q = -3	B1 B1 ((2)

(b) Grad. of line ADC:
$$m = -\frac{5}{7}$$
, Grad. of perp. line $= -\frac{1}{m} \left(= \frac{7}{5} \right)$ B1, M1

Equation of *l*: $y - 2 = \frac{7}{5}(x - 8)$ M1 A1ft

$$7x - 5y - 46 = 0$$
 (Allow rearrangements, e.g. $5y = 7x - 46$) A1 (5)

(c) Substitute
$$y = 7$$
 into equation of l and find $x = ...$ M1

$$\frac{81}{7}$$
 or $11\frac{4}{7}$ (or exact equiv.)

(i)	Gradient DE = $-\frac{1}{2}$	B1 1	$-\frac{1}{2}$ (any working seen must be correct)
(ii)	$y - 3 = -\frac{1}{2}(x - 2)$	M1	Correct equation for straight line, any gradient, passing through F
		A1	$y-3 = -\frac{1}{2}(x-2)$ aef
	x+2y-8=0	A1 3	x+2y-8=0 (this form but can have fractional coefficients e.g. $\frac{1}{2}x+y-4=0$
(iii)	Gradient EF = $\frac{4}{2}$ =2	B1	Correct supporting working must be seen
	$-\frac{1}{2} \times 2 = -1$	B1 2	Attempt to show that product of their gradients = - 1 o.e.
(iv)	$DF = \sqrt{4^2 + 3^2} = 5$	M1	$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \text{ used}$
		A1 2	5

(v	DF is a diameter as angle DEF is a right angle.	B1	Justification that DF is a diameter
	Mid-point of DF <u>or</u> centre of circle is $(0,1\frac{1}{2})$	B1	Mid-point of DF <u>or</u> centre of circle is $(0,1\frac{1}{2})$
	Radius = 2.5	B1	Radius = 2.5
	$x^{2} + (y - \left(\frac{3}{2}\right)^{2}) = \left(\frac{5}{2}\right)^{2}$	B1√	$x^{2} + (y - \left(\frac{3}{2}\right)^{2}) = \left(\frac{5}{2}\right)^{2}$
	$x^{2} + y^{2} - 3y + \frac{9}{4} = \frac{25}{4}$ $x^{2} + y^{2} - 3y - 4 = 0$		
	$x^2 + y^2 - 3y - 4 = 0$	B1 5	$x^2 + y^2 - 3y - 4 = 0$
			obtained correctly with at least one line of intermediate working. SR For working that only shows
			$x^2 + y^2 - 3y - 4 = 0$ is
			equation for a circle with
			centre $(0,1\frac{1}{2})$ B1
			radius 2.5 B1

(i)	$y = \frac{4}{3}x + \frac{5}{3}$		
	gradient = $\frac{4}{3}$	B1 1	$\frac{4}{3}$ or 1.33 or better
(ii)	gradient of		
	$\perp^r = -\frac{3}{4}$	B1 ft	$-\frac{3}{4}$ seen or implied
	$y-2 = -\frac{3}{4}(x-1)$ $4y+3x=11$	M1	Attempts equation of straight line through (1, 2) with any gradient
	4y + 3x = 11	A1	$y-2 = -\frac{3}{4}(x-1)$ 3x+4y-11 = 0 (not aef)
		A1 4	3x + 4y - 11 = 0 (not aef)
(iii)	$P\left(-\frac{5}{4},0\right)$	B1	$\left(-\frac{5}{4},0\right)$ seen or implied
	$Q\left(0,\frac{11}{4}\right)$	B1 ft	$\left(0, \frac{11}{4}\right)$ seen or implied (from a straight
	(4)		line equation in (ii))
	$\left(-\frac{5}{8},\frac{11}{8}\right)$	B1 ft 3	$\left(-\frac{5}{8},\frac{11}{8}\right)$ aef

(i)	Length AC = $\sqrt{(8-5)^2 + (2-1)^2}$	M1		Uses $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
	$=\sqrt{3^2+1^2}$			
	$=\sqrt{10}$	A1		$\sqrt{10}$ (± $\sqrt{10}$ scores A0)
	Length AB = $\sqrt{(p-5)^2 + (7-1)^2}$ = $\sqrt{(p-5)^2 + 36}$	A1		$\sqrt{(p-5)^2+(7-1)^2}$
	$\sqrt{(p-5)^2 + 36} = 2\sqrt{10}$ $p^2 - 10p + 25 + 36 = 40$	M1		AB = 2AC (with algebraic expression) used
	$p^{2} - 10p + 23 + 36 = 40$ $p^{2} - 10p + 21 = 0$ $(p - 7)(p - 3) = 0$	M1		Obtains 3 term quadratic = 0 suitable for solving or $(p-5)^2 = 4$
	p = 7,3	A1 A1	7	p = 7 $p = 3$
				SR <u>If no working seen</u> , and one correct value found, award B2 in place of the final 4 marks in part (i)
(ii)	7 = 3x - 14 $x = 7$	M1 A1		Correct method to find x x = 7
	(5, 1) (7, 7)	M1		Use $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$
	Mid-point (6, 4)	A1√	4	(6, 4) or correct midpoint for their AB
				Alternative method y coordinate of midpoint = 4 M1 A1 sub 4 into equation of line M1 obtains $x = 6$ A1

Question	Answer	Marks	Guidan	се
(i)	$\operatorname{grad} AB = \frac{7-1}{4-2} \text{ oe or } 3$	M1		
	y-7 = their $m(x-4)$ or $y-1$ = their $m(x-2)$	M1	or use of $y =$ their gradient $x + c$ with coords of A or B	allow step methods used
	, ,		or M2 for $\frac{y-1}{7-1} = \frac{x-2}{4-2}$ o.e.	or eg M1 for $7 = 4m + c$ and $1 = 2m + c$ then M1 for correctly finding one of m and c
	y = 3x - 5 oe	A1	accept equivalents if simplified eg $3x - y = 5$	allow A1 for $c = -5$ oe if $y = 3x + c$ oe already seen
			allow B3 for correct eqn www	B2 for eg $y - 1 = 3(x - 2)$
		[3]		22101 eg y 1 300 2)
(ii)	showing grad BC = $\frac{2-1}{-1-2} = -\frac{1}{3}$ oe	B1	may be calculation or showing on diagram	
	and $-1/3 \times 3 = -1$ or grad BC is neg	B1	may be earned for statement / use of	eg allow 2 nd B1 for statement grad BC
	reciprocal of grad AB, [so 90°]		$m_1m_2 = -1$ oe, even if first B1 not earned	= -1/3 with no working if first B1 not earned
			for B1+B1, must be fully correct, with 3 as gradient in (i)	
	or for finding AC or AC ² independently of AB and BC	or B1	working needed such as $AC^2 = 5^2 + 5^2 = 50$	condone any confusion between squares and square roots etc for first B1 and for two M1s eg AC = $25 + 25$ = $\sqrt{50}$
	for correctly showing $AC^2 = BC^2 + AB^2$ oe	B1	working needed using correct notation such as $BC^2 = 3^2 + 1^2 = 10$; $AB^2 = 6^2 + 2^2 = 40$, $40 + 10 = 50$ [hence $AC^2 = BC^2 + AB^2$]	accept eg 3 and 1 shown on diagram and $BC^2 = 10$ etc
				0 for eg $\sqrt{40} + \sqrt{10} = \sqrt{50}$

Question Number		Sch	eme	Marks
(a)	$\frac{5}{4}$ oe		$\frac{5}{4}$ or exact equivalents such as 1.25 but not $\frac{5}{4}x$.	B1
				(1)
(b)	$y = \frac{5}{4}x + c$ $12,5 \Rightarrow 5 = \frac{5}{4} \times 12 + c \Rightarrow c =$		Uses a line with a parallel gradient $\frac{5}{4}$ oe or their gradient from part (a). Evidence is $y = \frac{5}{4}x + c$ or similar.	M1
			Method of finding an equation of a line with numerical gradient and passing through 12,5. Score even for the perpendicular line. Must be seen in part (a).	M1
	$y = \frac{5}{4}x -$	-10	Correct equation. Allow $-\frac{40}{4}$ for -10	A1
			•	(3)
(c)	B= 0,-10	B = 0,-10 Follow through on their 'c'. Allow also if -10 is marked in the correct place on the diagram. Allow $x = 0$, $y = -10$ (the $x = 0$ may be seen "embedded" but not just $y = -10$ with no evidence that $x = 0$)		B1ft
	C = 8,0	marked in the $x = 0$, $x = 8$ (the	orrect coordinates. Allow also if 8 is correct place on the diagram. Allow $y = 0$ may be seen "embedded" but with no evidence that $y = 0$)	B1
	-		o penalise it at the first occurrence	
	bı	it check the dia	gram if necessary.	
				(2)

(d)	Area of Parallelogram = 3+'10' ×'8' = 104	Uses area of parallelogram = $bh = 3+'10' \times "8"$ Follow through on their 10 and their 8	M1	
	•••	lly scores both marks	111	(2)

Question Number	Scheme Notes		
' (a)	l_1 : passes through (0, 2) and (3, 7) l_2 : goes through (3, 7) and is perpendicular to l_1		
	Gradient of l_1 is $\frac{7-2}{3-0} \left(= \frac{5}{3} \right)$	$m(l_1) = \frac{7-2}{3-0}$. Allow un-simplified. May be implied.	B1
	$m(l_2) = -1 \div their \frac{5}{3}$	Correct application of perpendicular gradient rule	M1
		M1: Uses $y - 7 = m(x - 3)$ with their <u>changed</u>	
	$y-7 = "-\frac{3}{5}"(x-3)$	gradient or uses $y = mx + c$ with $(3, 7)$ and	
	or $y = "-\frac{3}{5}"x + c$, $7 = "-\frac{3}{5}"(3) + c \implies c = \frac{44}{5}$	their changed gradient to find a value for c	M1A1ft
	$y = -\frac{2}{3}(x+c), \ \ / = -\frac{2}{3}(3) + c \implies c = \frac{2}{3}$	A1ft: Correct ft equation for their perpendicular gradient (this is dependent on both M marks)	
	3x + 5y - 44 = 0	Any positive or negative integer multiple. Must be seen in (a) and must include "= 0".	A1
			[5]
		M1: Puts $y = 0$ and finds a value for x from their equation	
(b)	When $y = 0$ $x = \frac{44}{3}$	A1: $x = \frac{44}{3} \left(\text{ or } 14\frac{2}{3} \text{ or } 14.6 \right)$ or exact	M1 A1
(b)		equivalent. $(y = 0 \text{ not needed})$	
	Condone $3x - 5y - 44 = 0$ only leading to the correct answer		
	and condone coordinates written as (0, 44/3) but allow recovery in (c)		
		`	[2]

(c)			
	$OPQT = \frac{1}{2}(2+7) \times 3$	M1: Correct method for OPQT or TRQ	
	or	Alft: $OPQT = \frac{1}{2}(2+7) \times 3$ or $TRQ = \frac{1}{2} \times 7 \times \left(\frac{44}{3} - 3\right)$	M1A1ft
	$\frac{1}{2}(2+7) \times 3 + \frac{1}{2} \times 7 \times \left(\frac{44}{3} - 3\right)$	dM1: Correct numerical combination of areas that have been calculated correctly A1: Fully Correct numerical expression for the area ORQP	dM1A1
	54 1 3	Any exact equivalent e.g. $\frac{163}{3}$, $\frac{326}{6}$, 54.3	A1

$$\frac{1}{2} \times (7+2) \times 3 + \frac{1}{2} \times \frac{"35"}{3} \times 7$$
$$= \frac{27}{2} + \frac{245}{6} = \frac{326}{6}$$

Question	Answer	Marks	Guidan	ce
(i)	$AB^2 = (1-(-1))^2 + (5-1)^2$	M1	oe, or square root of this; condone poor notation re roots; condone $(1+1)^2$ instead of $(1-(-1))^2$ allow M1 for vector AB = $\begin{pmatrix} -2 \\ -4 \end{pmatrix}$, condoning poor notation, or triangle with hyp AB and lengths 2 and 4 correctly marked	
	$BC^{2} = (3 - (-1))^{2} + (-1 - 1)^{2}$	M1	oe, or square root of this; condone poor notation re roots; condone $(3 + 1)^2$ instead of $(3-(-1))^2$ oe allow M1 for vector BC = $\begin{pmatrix} 4 \\ -2 \end{pmatrix}$, condoning poor notation, or triangle with hyp BC and lengths 4 and 2 correctly marked	
	shown equal eg $AB^2 = 2^2 + 4^2$ [=20] and $BC^2 = 4^2 + 2^2$ [=20] with correct notation for final comparison	A1	or statement that AB and BC are each the hypotenuse of a right-angled triangle with sides 2 and 4 so are equal $SC2 \text{ for just } AB^2 = 2^2 + 4^2 \text{ and} \\ BC^2 = 4^2 + 2^2 \text{ (or roots of these) with no clearer earlier working; condone poor notation}$	eg A0 for AB = 20 etc
		[3]		

Question	Answer	Marks	Guidan	ce
(ii)	[grad. of AC =] $\frac{5-(-1)}{1-3}$ or $\frac{6}{-2}$ oe [grad. of BD =] $\frac{5-1}{11-(-1)}$ or $\frac{4}{12}$ oe	M1	award at first step shown even if errors after	
	[grad. of BD =] $\frac{5-1}{11-(-1)}$ or $\frac{4}{12}$ oe	M1		if one or both of grad AC = -3 and grad BD = 1/3 seen without better working for both gradients, award one M1 only. For M1M1 it must be clear that they are obtained independently
	showing or stating product of gradients $=-1$ or that one gradient is the negative reciprocal of the other oe	В1	eg accept $m_1 \times m_2 = -1$ or 'one gradient is negative reciprocal of the other' B0 for 'opposite' used instead of 'negative' or 'reciprocal'	may be earned independently of correct gradients, but for all 3 marks to be earned the work must be fully correct
		[3]		

Question	n Answer	Marks	Guidance	
(iii)	midpoint E of AC = $(2, 2)$ www	B1	condone missing brackets for both B1s	0 for $((5+-1)/2, (1+3)/2) = (2, 2)$
	eqn BD is $y = \frac{1}{3}x + \frac{4}{3}$ oe	M1	accept any correct form isw or correct ft their gradients or their midpt F of BD this mark will often be gained on the first line of their working for BD	may be earned using (2, 2) but then must independently show that B or D or (5, 3) is on this line to be eligible for A1
	eqn AC is $y = -3x + 8$ oe	M1	accept any correct form isw or correct ft their gradients or their midpt E of AC this mark will often be gained on the first line of their working for AC [see appendix for alternative methods instead showing E is on BD for this M1]	if equation(s) of lines are seen in part ii, allow the M1s if seen/used in this part
	using both lines and obtaining intersection E is (2, 2) (NB must be independently obtained from midpt of AC)	A1		[see appendix for alternative ways of gaining these last two marks in different methods]
	midpoint F of BD = $(5,3)$	B1	this mark is often earned earlier	
			see the appendix for some common alternative methods for this question; for all methods, for A1 to be earned, all work for the 5 marks must be correct	for all methods show annotations M1 B1 etc then omission mark or A0 if that mark has not been earned
		[5]		

(i)	grad CD = $\frac{5-3}{3-(-1)} \left[= \frac{2}{4} \text{ o.e.} \right]$ isw	M1	NB needs to be obtained independently of grad AB
	grad AB = $\frac{3 - (-1)}{6 - (-2)}$ or $\frac{4}{8}$ isw	M1	
	same gradient so parallel www	A1	must be explicit conclusion mentioning 'same gradient' or 'parallel'
			if M0, allow B1 for 'parallel lines have same gradient' o.e.
(ii)	[BC ² =] $3^2 + 2^2$ [BC ² =] 13 showing AD ² = $1^2 + 4^2$ [=17] [\neq BC ²] isw	M1 A1 A1	accept $(6-3)^2 + (3-5)^2$ o.e. or [BC =] $\sqrt{13}$ or [AD =] $\sqrt{17}$
			or equivalent marks for finding AD or AD ² first
			alt method: showing AC ≠ BD – mark equivalently
(iii)	[BD eqn is] $y = 3$	M1	eg allow for 'at M, y = 3' or for 3 subst in eqn of AC
	eqn of AC is $y - 5 = 6/5 \times (x - 3)$ o.e [$y = 1.2x + 1.4$ o.e.]	М2	or M1 for grad AC = 6/5 o.e. (accept unsimplified) and M1 for using their grad of AC with coords of A(-2, -1) or C (3, 5) in eqn of line or M1 for 'stepping' method to reach M
	M is (4/3, 3) o.e. isw	A1	allow: at M, $x = 16/12$ o.e. [eg =4/3] isw A0 for 1.3 without a fraction answer seen
(iv)	midpt of BD = $(5/2, 3)$ or equivalent simplified form cao	M1	or showing BM \neq MD oe [BM = 14/3, MD = 7/3]
	midpt AC = (1/2, 2) or equivalent simplified form cao or 'M is 2/3 of way from A to C'	M1	or showing AM \neq MC or AM ² \neq MC ²
	conclusion 'neither diagonal bisects the other'	A1	in these methods A1 is dependent on coords of M having been obtained in part (iii) or in this part; the coordinates of M need not be correct; it is also dependent on midpts of both AC and BD attempted, at least one correct alt method: show that mid point of BD does not lie on AC (M1) and vice-versa
			(M1), A1 for both and conclusion