Mixed Exercise 3

1.	
	$w \cdot \nabla h$ is defined as $5w^2 - 8w + h^2 - 2h$
	For example $1 \bigvee 6 = 5 \times 1^2 - 8 \times 1 + 6^2 - 2 \times 6$ $= 5 - 8 + 36 - 12$ $= 21$
(a)	Work out 2 ▼ 4
	Answer(2 marks
(b)	Solve $x \vee 3 = 0$

Answer...... (4 marks)

\mathbf{a}	
1	
_	•

(a)	n is a positive integer.
	Write down the next odd number after $2n-1$
	Answer(1 mark)
(b)	Prove that the product of two consecutive odd numbers is always one less than a multiple of 4.
	(3 marks)
3.	
	Bag A contains $7x$ counters.
	Bag B contains $2x$ counters.
	Five counters are taken from bag A and put in bag B.
(a)	Write an expression, in terms of x , for the number of counters now in bag B .
	Answer(1 mark)

(b) The ratio of counters in bag A to bag B is now 8:3			
	Use algebra to work out the total number of counters in the bags.		
	Answer (4 marks)		
4.	Solve the simultaneous equations		
	x-1 $x+6$		
	$\frac{x-1}{y-2} = 3$ $\frac{x+6}{y-1} = 4$		
	Do not use trial and improvement. You must show your working.		

	x =, y =
5.	
5.	Simplify fully $\frac{4x^2 + 19x - 5}{9x^2 - 16} \div \frac{x + 5}{3x - 4}$
5.	Simplify fully $\frac{4x^2 + 19x - 5}{9x^2 - 16} \div \frac{x + 5}{3x - 4}$
5.	Simplify fully $\frac{4x^2 + 19x - 5}{9x^2 - 16} \div \frac{x + 5}{3x - 4}$
õ.	Simplify fully $\frac{4x^2 + 19x - 5}{9x^2 - 16} \div \frac{x + 5}{3x - 4}$
õ.	Simplify fully $\frac{4x^2 + 19x - 5}{9x^2 - 16} \div \frac{x + 5}{3x - 4}$
5.	
5.	
5.	
õ.	
5.	
5.	
5.	
5.	

	Answer (5 marks)
6.	
(a)	Expand $(x+m)(x+n)$
	Answer
(b)	$x^2 + qx + r \equiv (x+m)(x+n)$
	Use your answer to part (a) to write q and r in terms of m and n .
	$q = \dots$
	r =
(c)	$\it r$ is an odd integer.
	Use your answer to part (b) to explain why q is an even integer.
	(2 marks)

A, B and C are points on the line 2x + y = 8

DCE is a straight line.

AB:BC = 2:1

EC: *CD* = 1:2

Work out the ratio	Area of triangle AEC : Area of triangle BCD	
Give your answer in its	s simplest form.	
Ans	swer	(6 marks)

In the diagram, AB = BC

Prove that <i>ABCD</i> is a cyclic quadrilateral. Give reasons for any statements you make.
(3 marks)

ABC is a right-angled triangle. D is a point on AC. BD is perpendicular to AC.

Not drawn accurately

a)	Use triangle ABC to write $\cos\theta$ in terms of x .
	$\cos \theta =$ (1 mark)
b)	By writing another expression for $\cos\theta$ in terms of x , or otherwise, work out the value of x .
	r = cm (2 marks)
	r = cm (2 marks)

10.

The line $y = mx + c$ passes through the point $(4, 3)$. It is parallel to the line $y = 5x + 6$	
Work out the values of m and c .	
$m=\ldots, c=\ldots$ (3 mark	ks)