Answers - Mixed Exercise - 2

1.

Answer	Mark	Comments
$(5n-3)^2+1$	M1	
$25n^2 - 15n - 15n + 9 + 1$	M1	Allow 1 error Must have an n ² term
$25n^2 - 30n + 10$	A1	
$5(5n^2 - 6n + 2)$	B1ft	oe eg, shows that all terms divide by 5 or explains why the expression is a multiple of 5

Answer	Mark	Comments
(x+6)(x-2)	B1	
(x+5)(x-5)	B1	
x(x-5)	B1	
$\frac{\text{their } (x+6)(x-2)}{\text{their } (x+5)(x-5)} \times \frac{\text{their } x(x-5)}{x+6}$	M1	Must have attempted to factorise at least two of the above
$\frac{x(x-2)}{x+5} \text{or} \frac{x^2-2x}{x+5}$	A1	A0 if incorrect further work seen

Answer	Mark	Comments
$x = 8^{\frac{2}{3}}$ or $x = \sqrt[3]{64}$ or $x^3 = 64$ or	M1	
$\sqrt{x} = 2$ or $x = 2^2$		
x = 4	A1	
$y^2 = \frac{4}{25}$ or $\frac{1}{y^2} = \frac{25}{4}$ or	M1	
$y^{-1} = \sqrt{\frac{25}{4}}$ or $\frac{1}{y} = \sqrt{\frac{25}{4}}$		
$y = \frac{2}{5}$ or $y^{-1} = \frac{5}{2}$ or $\frac{1}{y} = \frac{5}{2}$	A1	Accept $y = \pm \frac{2}{5}$ or $y^{-1} = \pm \frac{5}{2}$ or $\frac{1}{y} = \pm \frac{5}{2}$
10	A1	

	Answer	Mark	Comments
(a)	Angle ACP = x or angle PAC (base angles of) isosceles triangle (are equal)	M1	
	Angle $APC = 180 - 2x$ angle sum of triangle (= 180°) and angle $BPC = 2x$ angles on straight line (add to 180°)	M1 Dep	BPC = 2x external angle of triangle (= sum of interior opposite angles)
	Angle ABC = 2x or angle BPC (base angles of) isosceles triangle (are equal)	A1	SC2 'Correct' response but has reason(s) missing or incorrect
(b)	Angle $ACB = 2x$	M1	May be implied by working
	x + 2x + 2x = 180	M1	oe eg 1 $5x = 180$
			eg 2 $90 - \frac{1}{2}x = 2x$
	36	A1	

	Answer	Mark	Comments
		1	
(a)	$-8 \le m+n \le 7$	B2	B1 - 8 or 7 in correct position
(b)	$0 \le (m+n)^2 \le 64$	B2ft	If (a) is fully correct ft does not apply
			B1 For 0 or 64 in correct position
			If (a) is not fully correct apply ft
			Can only award B2ft if their (a) has one negative value and one positive value
			B1ft for one value in correct position
			Can award a maximum of B1ft if in (a) both values have the same sign or one value is zero

Answer	Mark	Comments
$\frac{4}{3}\pi x^3 (=) \frac{2}{3}\pi y^3$	M1	oe eg 1 $\frac{4}{3}\pi \times x^3 (=) \frac{1}{2} \times \frac{4}{3}\pi \times y^3$
		eg 2 $y^3 = 2x^3$
$(\frac{y^3}{x^3} =) \frac{\frac{4}{3}\pi}{\frac{2}{3}\pi} \text{ or } y = \sqrt[3]{2}x$	M1 Dep	oe eg $\frac{y^3}{x^3} = 2$
$2^{\frac{1}{3}}$	A1	³ √2 scores M2 A0

-	Answer	Mark	Comments
(a)	Gradient $AC = \frac{4-0}{0-12}$ or $-\frac{1}{3}$	M1	oe
	$y = -\frac{1}{3}x + 4$	A1	oe eg $x + 3y = 4$ Must be an equation
(b)	Gradient OB = 3	B1ft	ft Their gradient in (a) using $m_1 \times m_2 = -1$
	Equation of <i>OB</i> : $y = 3x$	M1	ft Their gradient OB
	$3x = -\frac{1}{3}x + 4$	M1	ft Their equations
	$x = \frac{6}{5}$ or 1.2	A1ft	oe (x coordinate of midpoint of OB) ft From their linear equations
	$y = \frac{18}{5}$ or 3.6	A1	oe (y coordinate of midpoint of OB)
	$\left(\frac{12}{5}, \frac{36}{5}\right)$ or (2.4, 7.2)	B1ft	oe ft Their x and y values for the midpoint

	Answer	Mark	Comments
(a)	Positive	B1	Do not allow if more than one answer selected
(b)	Negative	B1	Do not allow if more than one answer selected
(c)	One positive and one negative	B1	Do not allow if more than one answer selected
(d)	0	B1	Do not allow if more than one answer selected
(e)	y = -3	B1	Do not allow if more than one answer selected

Answer	Mark	Comments
$(4-x)^2 = 4x + 5$	M1	
$16 - 4x - 4x + x^2 = 4x + 5$	M1 Dep	Allow one error but must be a quadratic in \boldsymbol{x}
$x^2 - 12x + 11 (= 0)$	A1	oe Must be 3 terms
(x-11)(x-1) (=0)	M1	$\frac{12 \pm \sqrt{(-12)^2 - 4(1)(11)}}{2} \text{or} (x-6)^2 - 36 + 11 = 0 \qquad \text{oe}$
x = 11 and $x = 1$	A1ft	Must have M3 to ft $x = 11$ and $y = -7$ or $x = 1$ and $y = 3$
x = 11 and $y = -7$ and $x = 1$ and $y = 3$	A1	

Answer	Mark	Comments
Fully correct method to eliminate a letter from OB and AB	M1	oe eg 1 $2y = 11(\frac{y}{2}) - 7$
2(2x) = 11x - 7		eg 2 $2y - 4x = 0$
		2y - 11x = -7 and $7x = 7$
Coordinates of B = (1, 2)	A1	Implied by $x = 1$ and $y = 2$
Fully correct method to eliminate a letter from OA and AB	M1	oe eg 1 $x + 3(\frac{11x - 7}{2}) = 0$
2y = 11(-3y) - 7		eg 2 $2x + 6y = 0$
		33x - 6y = 21
		and $35x = 21$
Coordinates of $A = (0.6, -0.2)$	A1	oe Implied by $x = 0.6$ and $y = -0.2$
OB^2 = their 1^2 + their 2^2	M1	oe
or		eg correct attempt at OB or AB
$AB^2 = (\text{their } 1 - \text{their } 0.6)^2 +$		ft Their B and/or their A
(their 2 – their –0.2) ²		
$OB = \sqrt{5}$ and $AB = \sqrt{5}$	A1	oe
		eg $OB^2 = 5$ and $AB^2 = 5$