1. Factorise completely,

(a) 
$$3x^2 - 10x + 8$$

(b) 
$$2x^2 - x - 10$$

(c) 
$$4x^3 + 4x^2 - 3x$$

(d) 
$$18a^3 - 50ab^2$$

(e) 
$$2a(3a-2b)-5b(3a-2b)$$

(f) 
$$3x^2(2x+5y) + 4y^2(2x+5y)$$

2. Exapand and simplify without using a calculator,

(a) 
$$(2-5\sqrt{3})(4+3\sqrt{3})$$

(b) 
$$(4\sqrt{5} + 3\sqrt{3})(2\sqrt{5} - 5\sqrt{3})$$

3. Rationalise the denominator:

(a) 
$$\frac{3}{5-2\sqrt{3}}$$

$$(b) \qquad \frac{\sqrt{5} + \sqrt{2}}{3\sqrt{5} - 2\sqrt{2}}$$

4.

$$\left(\sqrt{a} + \sqrt{8a}\right)^2 = 54 + b\sqrt{2}$$

a and b are positive integers. Find the value of a and the value of b. Show your working clearly.

| a | = |  |
|---|---|--|
|   |   |  |

5.

$$(3+\sqrt{a})(4+\sqrt{a})=17+k\sqrt{a}$$
 where a and k are positive integers.

Find the value of a and the value of k.



PSR is a straight line.

Angle  $PSQ = 90^{\circ}$ 

 $PS = 8.4 \,\mathrm{cm}$ 

Angle  $OPS = 38^{\circ}$ 

Angle  $SQR = 44^{\circ}$ 

Work out the length of QR.

Give your answer correct to 3 significant figures.

The diagram shows triangle ABC.



AB = 9 cm BC = 15 cm D is the point on AC such that AD = 5 cm. Angle  $BAC = 90^{\circ}$ 

Calculate the size of angle *x*. Give your answer to the nearest degree.



The diagram shows a regular pentagon inside a circle, centre O. The points A and B lie on the circle such that AB is a side of the pentagon. OA = 7 cm.

TA is a tangent to the circle and OBT is a straight line.

Calculate the area of triangle *ABT*. Give your answer correct to 3 significant figures.

 $.....cm^2\\$