(a) Simplify $(16y^8)^{\frac{3}{4}}$

(b) Given that $2^p \times 8^q = 2^n$ express n in terms of p and q.

n =

2.

(a) Simplify $(3a^2b)^4$

.....

(b) Simplify $(9c^8)^{\frac{1}{2}}$

.....

Diagram NOT accurately drawn

The diagram shows a sector OAPB of a circle, centre O. AB is a chord of the circle. OA = OB = 5.4 cm. Angle $AOB = 72^{\circ}$

Calculate the area of the shaded segment *APB*. Give your answer correct to 3 significant figures.

omi
 CIII

AOD is a diameter of a circle, with centre O and radius 9 cm. ABC is an arc of the circle.

AC is a chord.

Angle $ADC = 35^{\circ}$

Calculate the area of the shaded segment. Give your answer correct to 3 significant figures.

..... cm²

5.	
(a) The equation of a line L is $2x - 3y = 6$ Find the gradient of L.	
I find the gradient of E.	
	(3)
(b) Find the equation of the line which is parallel to L and passes through	(0)
(b) Find the equation of the line which is parallel to L and passes through the point (6, 9).	(3)

The points (0, -1) and (4, 5) lie on the straight line L.

(a) Work out the gradient of L.

(2)

(b) Write down an equation of L.

(1)

(c) Find an equation of the line which is parallel to L and passes through the point (-2, 0)

(2)

Show that
$$(6 - \sqrt{8})^2 = 44 - 24\sqrt{2}$$

Show each stage of your working clearly.

8.

Show that
$$\frac{\sqrt{3} + \sqrt{27}}{\sqrt{2}}$$
 can be expressed in the form \sqrt{k} where k is an integer.

State the value of k.

$$k =$$

The diagram shows a trapezium ABCD with AD parallel to BC. AB = x cm, BC = (x + 5) cm and AD = (x + 8) cm. The area of the trapezium is 42 cm².

(a) Show that $2x^2 + 13x - 84 = 0$

(2)

(b) Calculate the perimeter of the trapezium.

..... cm

The diagram shows a rectangular playground of width x metres and length 3x metres.

The playground is extended, by adding 10 metres to its width and 20 metres to its length, to form a larger rectangular playground.

The area of the larger rectangular playground is double the area of the original playground.

(a) Show that $3x^2 - 50x - 200 = 0$

(b) Calculate the area of the original playground.

..... m

(3)