Straight Line Graphs

Exercise A

1 Work out the gradient of the line joining these pairs of points:

b
$$(-1,3)$$
, $(5,4)$

$$\mathbf{c}$$
 (-4, 5), (1, 2)

$$\mathbf{d}$$
 (2, -3), (6, 5)

$$\mathbf{f}$$
 (-12, 3), (-2, 8)

2 The line joining (3, -5) to (6, a) has gradient 4. Work out the value of a.

3 The line joining (5, b) to (8, 3) has gradient -3. Work out the value of b.

4 The line joining (c, 4) to (7, 6) has gradient $\frac{3}{4}$. Work out the value of c.

Exercise B

1. Find the gradient and y-intercept of each of the following lines.

$$\mathbf{a} \ \mathbf{v} = -\mathbf{x} + 4$$

b
$$y = 2x - 5$$

c
$$y = \frac{1}{2}x - \frac{2}{3}$$

d
$$y = -3x$$

e
$$y = \frac{6}{7}x + \frac{7}{5}$$

f
$$y = 2 - 7x$$

$$g 3x - 4y + 8 = 0$$

h
$$4x - 5y - 10 = 0$$

$$i -2x + y - 9 = 0$$

$$\mathbf{i} \quad 7x + 4y + 12 = 0$$

$$\mathbf{k} \ 7x - 2y + 3 = 0$$

$$1 -5x + 4y + 2 = 0$$

2.

Write these lines in the form ax + by + c = 0.

a
$$y = 4x + 3$$

b
$$y = -3x - 2$$

c
$$y = -6x + 7$$

d
$$y = \frac{4}{5}x - 6$$

e
$$y = \frac{5}{3}x + 2$$

f
$$y = \frac{7}{3}x$$

$$y = 2x - \frac{4}{7}$$

h
$$y = -3x + \frac{2}{9}$$

i
$$y = -6x - \frac{2}{3}$$

$$y = -\frac{1}{3}x + \frac{1}{2}$$

$$\mathbf{k} \ y = \frac{2}{3}x + \frac{5}{6}$$

1
$$y = \frac{3}{5}x + \frac{1}{2}$$

3.

A line is parallel to the line 3x + 6y + 11 = 0 and its intercept on the *y*-axis is (0, 7). Write down the equation of the line.

4.

The line 3x + 2y - 5 = 0 meets the *x*-axis at the point *R*. Work out the coordinates of *R*.

5.

The line 5x - 4y + 20 = 0 meets the *y*-axis at the point *A* and the *x*-axis at the point *B*. Work out the coordinates of the points *A* and *B*.

Exercise C

Find the equation of the line with gradient m that passes through the point (x_1, y_1) when:

a
$$m = 2$$
 and $(x_1, y_1) = (2, 5)$

b
$$m = 3$$
 and $(x_1, y_1) = (-2, 1)$

$$\mathbf{c}$$
 $m = -1$ and $(x_1, y_1) = (3, -6)$

d
$$m = -4$$
 and $(x_1, y_1) = (-2, -3)$

e
$$m = \frac{1}{2}$$
 and $(x_1, y_1) = (-4, 10)$

f
$$m = -\frac{2}{3}$$
 and $(x_1, y_1) = (-6, -1)$

$$g m = 2 \text{ and } (x_1, y_1) = (a, 2a)$$

h
$$m = -\frac{1}{2}$$
 and $(x_1, y_1) = (-2b, 3b)$

- The line y = 4x 8 meets the x-axis at the point A. Find the equation of the line with gradient 3 that passes through the point A.
- The line y = -2x + 8 meets the y-axis at the point B. Find the equation of the line with gradient 2 that passes through the point B.
- The line $y = \frac{1}{2}x + 6$ meets the x-axis at the point C. Find the equation of the line with gradient $\frac{2}{3}$ that passes through the point C. Write your answer in the form ax + by + c = 0, where a, b and c are integers.
- The line $y = \frac{1}{4}x + 2$ meets the y-axis at the point B. The point C has coordinates (-5, 3). Find the gradient of the line joining the points B and C.
- The lines y = x and y = 2x 5 intersect at the point A. Find the equation of the line with gradient $\frac{2}{5}$ that passes through the point A. (Hint: Solve y = x and y = 2x 5 simultaneously.)
- The lines y = 4x 10 and y = x 1 intersect at the point T. Find the equation of the line with gradient $-\frac{2}{3}$ that passes through the point T. Write your answer in the form ax + by + c = 0, where a, b and c are integers.
- The line p has gradient $\frac{2}{3}$ and passes through the point (6, -12). The line q has gradient -1 and passes through the point (5, 5). The line p meets the y-axis at A and the line q meets the x-axis at B. Work out the gradient of the line joining the points A and B.

Exercise D

- 1 Find the equation of the line that passes through these pairs of points:
 - **a** (2, 4) and (3, 8)
 - **b** (0, 2) and (3, 5)
 - c (-2,0) and (2,8)
 - **d** (5, -3) and (7, 5)
- The line that passes through the points (2, -5) and (-7, 4) meets the *x*-axis at the point *P*. Work out the coordinates of the point *P*.
- The line that passes through the points (-3, -5) and (4, 9) meets the *y*-axis at the point *G*. Work out the coordinates of the point *G*.
- The line that passes through the points $(3, 2\frac{1}{2})$ and $(-1\frac{1}{2}, 4)$ meets the *y*-axis at the point *J*. Work out the coordinates of the point *J*.
- The line y = 2x 10 meets the x-axis at the point A. The line y = -2x + 4 meets the y-axis at the point B. Find the equation of the line joining the points A and B. (Hint: First work out the coordinates of the points A and B.)

- The line y = 4x + 5 meets the *y*-axis at the point *C*. The line y = -3x 15 meets the *x*-axis at the point *D*. Find the equation of the line joining the points *C* and *D*. Write your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers.
- The lines y = x 5 and y = 3x 13 intersect at the point *S*. The point *T* has coordinates (-4, 2). Find the equation of the line that passes through the points *S* and *T*.
- The lines y = -2x + 1 and y = x + 7 intersect at the point L. The point M has coordinates (-3, 1). Find the equation of the line that passes through the points L and M.
- The vertices of the triangle ABC have coordinates A(3, 5), B(-2, 0) and C(4, -1). Find the equations of the sides of the triangle.
- The line V passes through the points (-5, 3) and (7, -3) and the line W passes through the points (2, -4) and (4, 2). The lines V and W intersect at the point A. Work out the coordinates of the point A.

Exercise E

1.

Find an equation of the line:

- **a** parallel to the line y = -2x 5, passing through $(-\frac{1}{2}, \frac{3}{2})$
- **b** parallel to the line x 2y 1 = 0, passing through (0, 0)
- **c** perpendicular to the line y = x 4, passing through (-1, -2)
- **d** perpendicular to the line 2x + y 9 = 0, passing through (4, -6).

2.

Find an equation of the line:

- **a** parallel to the line y = 3x + 6, passing through (-2, 5)
- **b** perpendicular to the line y = 3x + 6, passing through (-2, 5)
- **c** parallel to the line 4x 6y + 7 = 0, passing through (3, 4)
- **d** perpendicular to the line 4x 6y + 7 = 0, passing through (3, 4).
- 3. The line r passes through the points (1, 4) and (6, 8) and the line s passes through the points (5, -3) and (20, 9). Show that the lines r and s are parallel.
- 4.

The vertices of a quadrilateral *ABCD* has coordinates A(-1, 5), B(7, 1), C(5, -3), D(-3, 1). Show that the quadrilateral is a rectangle.

Exercise F

1	The points A and B have coordinates $(-4, 6)$ and $(2, 8)$ respectively. A line p is drawn through B perpendicular to AB to meet the y -axis at the point C .
	a Find an equation of the line <i>p</i> .
(b Determine the coordinates of <i>C</i> .
Lacoused	 The line <i>l</i> has equation 2x - y - 1 = 0. The line <i>m</i> passes through the point A(0, 4) and is perpendicular to the line <i>l</i>. Find an equation of <i>m</i> and show that the lines <i>l</i> and <i>m</i> intersect at the point P(2, 3). The line <i>n</i> passes through the point B(3, 0) and is parallel to the line <i>m</i>. Find an equation of <i>n</i> and hence find the coordinates of the point Q where the lines <i>l</i> and <i>n</i> intersect.
3	The line L_1 has gradient $\frac{1}{7}$ and passes through the point $A(2, 2)$. The line L_2 has gradient -1 and passes through the point $B(4, 8)$. The lines L_1 and L_2 intersect at the point C . a Find an equation for L_1 and an equation for L_2 .
	b Determine the coordinates of <i>C</i> .
4	The straight line passing through the point $P(2, 1)$ and the point $Q(k, 11)$ has gradient $-\frac{5}{12}$. a Find the equation of the line in terms of x and y only. b Determine the value of k .
5	a Find an equation of the line l which passes through the points $A(1,0)$ and $B(5,6)$. The line m with equation $2x + 3y = 15$ meets l at the point C .
6	The line L passes through the points $A(1,3)$ and $B(-19,-19)$. Find an equation of L in the form $ax + by + c = 0$, where a , b and c are integers.
7	The straight line l_1 passes through the points A and B with coordinates $(2,2)$ and $(6,0)$ respectively. a Find an equation of l_1 . The straight line l_2 passes through the point C with coordinates $(-9,0)$ and has gradient $\frac{1}{4}$. b Find an equation of l_2 .
8	The straight line l_1 passes through the points A and B with coordinates $(0, -2)$ and $(6, 7)$ respectively. a Find the equation of l_1 in the form $y = mx + c$. The straight line l_2 with equation $x + y = 8$ cuts the y -axis at the point C . The lines l_1 and l_2 intersect at the point D .
	b Calculate the coordinates of the point D . c Calculate the area of $\triangle ACD$.

9 The points A and B have coordinates (2, 16) and (12, -4) respectively. A straight line l_1 passes through A and B. **a** Find an equation for l_1 in the form ax + by = c. The line l_2 passes through the point C with coordinates (-1, 1) and has gradient $\frac{1}{3}$. **b** Find an equation for l_2 . 10 The points A(-1, -2), B(7, 2) and C(k, 4), where k is a constant, are the vertices of $\triangle ABC$. Angle ABC is a right angle. **a** Find the gradient of AB. **b** Calculate the value of *k*. c Find an equation of the straight line passing through B and C. Give your answer in the form ax + by + c = 0, where a, b and c are integers. 11 The straight line *l* passes through $A(1, 3\sqrt{3})$ and $B(2 + \sqrt{3}, 3 + 4\sqrt{3})$. a Calculate the gradient of l giving your answer as a surd in its simplest form. **b** Give the equation of *l* in the form y = mx + c, where constants *m* and *c* are surds given in their simplest form. **c** Show that *l* meets the *x*-axis at the point C(-2, 0). **12** a Find an equation of the straight line passing through the points with coordinates (-1, 5)and (4, -2), giving your answer in the form ax + by + c = 0, where a, b and c are integers. The line crosses the x-axis at the point A and the y-axis at the point B, and O is the origin. **b** Find the area of $\triangle OAB$. E 13 The points A and B have coordinates (k, 1) and (8, 2k - 1) respectively, where k is a constant. Given that the gradient of AB is $\frac{1}{3}$: **a** show that k=2**b** find an equation for the line through A and B. 14 The straight line l_1 has equation 4y + x = 0. The straight line l_2 has equation y = 2x - 3. **a** On the same axes, sketch the graphs of l_1 and l_2 . Show clearly the coordinates of all points at which the graphs meet the coordinate axes. The lines l_1 and l_2 intersect at the point A. **b** Calculate, as exact fractions, the coordinates of A. c Find an equation of the line through A which is perpendicular to l_1 . Give your answer in the form ax + by + c = 0, where a, b and c are integers. 15 The points A and B have coordinates (4, 6) and (12, 2) respectively. The straight line l_1 passes through A and B. **a** Find an equation for l_1 in the form ax + by + c = 0, where a, b and c are integers. The straight line l_2 passes through the origin and has gradient -4. **b** Write down an equation for l_2 . The lines l_1 and l_2 intersect at the point C. c Find the coordinates of C.