Baseline Assessment – Year 10 (Monday Group)

1. Simplify,

$$7\sqrt{28} - 3\sqrt{63} + \sqrt{7}$$

2. Expand the brackets and simplify,

(i)
$$(4+\sqrt{2})(3+\sqrt{2})$$

(ii)
$$(3-4\sqrt{3})(2+3\sqrt{3})$$

3. Rationalise the denominator.

(i)
$$\frac{2}{\sqrt{7}}$$

4.	Simp	lify,

(i) 4^{-3}

.....

(ii)
$$25^{\frac{3}{2}}$$

.....

5. Factorise,

(i)
$$2x^2 + 3x - 9$$

.....

(ii)
$$9x^2 - 25$$

.....

6. Simplify,

(i)
$$\frac{x^2 - 6x + 8}{x^2 - 7x + 10}$$

.....

$$(ii) \quad \frac{4}{x} + \frac{3}{2-x}$$

.....

7.

Diagram NOT accurately drawn

LMN is a right-angled triangle.

MN = 9.6 cm.

LM = 6.4 cm.

Calculate the size of the angle marked x° .

Give your answer correct to 1 decimal place.

•

Diagram **NOT** accurately drawn

Triangle ABC is right-angled at B. Angle $BAC = 32^{\circ}$ AC = 47 m. D is the point on AB such that angle $BDC = 51^{\circ}$

Calculate the length of *BD*. Give your answer correct to 3 significant figures.

..... n

Find the probability that the two marbles he picked are of different colours.				
(Hint: You may use a tree diagram to solve this problem.)				

There are 4 green marbles, 2 red marbles and 3 blue marbles in a box.

A, B, C and D are points on a circle.

Angle $BAC = 40^{\circ}$.

Angle $DBC = 55^{\circ}$.

Diagram NOT accurately drawn

(a)	(i)	Find the size of angle DAC .
	(ii)	Give a reason for your answer.
(b)	(i)	Calculate the size of angle DCB.
	(ii)	Give reasons for your answer.
		(3)
(c)	Is B	BD a diameter of the circle?
	Giv	e a reason for your answer.
		(1)

In the diagram, ABCD and EFGH are rectangles with AB = 10 cm, BC = 7 cm, EF = 7 cm and FG = 4 cm, all figures accurate to the nearest cm. Find the largest possible value of the shaded area.

(Hint: Think about upper bounds and lower bounds.)

12.

q is inversely proportional to the square of t.

When
$$t = 4$$
, $q = 8.5$

(a) Find a formula for q in terms of t.

q =(3)

	Calculate the value of q when $t = 5$	(b)
(1)		
(1)		