Medical Imaging 1 - Answers

1.

	Any three from:		Allow consistent use of plurals throughout, e.g. Photons eject electrons
	Photoelectric effect: Photon ejects / removes an electron (from the atom / metal)	B1×3	GIGGROUS
	Compton (scattering): Photon emerges with less energy / longer wavelength / lower frequency <u>and</u> an electron escapes / ejected (from the atom)		
	Pair-production: Photon produces an electron-positron (pair)		
	Scattering : Photon is scattered by an electron		
	QWC: (Intensity decreases in the original direction because) there are fewer <u>photons</u>	B1	
(i)	$(E = \frac{hc}{\lambda})$		
	$(E =) \frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{1.4 \times 10^{-11}}$ or $(f =) 2.14 \times 10^{19}$ (Hz)	C1	
	energy = 1.4×10^{-14} (J)	A1	
(ii)	gradient = (-) μ	C1	Allow correct substitution into $\ln I = \ln I_0 - \mu x$; coordinates read to $\pm \frac{1}{2}$ small square
	$\mu = 0.20 \text{ (cm}^{-1})$	A1	Allow 1 SF answer of 0.2 (cm ⁻¹) Allow answer in the range 0.19 to 0.21 (cm ⁻¹) Ignore sign
		Photoelectric effect: Photon ejects / removes an electron (from the atom / metal) Compton (scattering): Photon emerges with less energy / longer wavelength / lower frequency and an electron escapes / ejected (from the atom) Pair-production: Photon produces an electron-positron (pair) Scattering: Photon is scattered by an electron PQWC: (Intensity decreases in the original direction because) there are fewer photons (i) $(E = \frac{hc}{\lambda})$ $(E =) \frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{1.4 \times 10^{-11}}$ or $(f =) 2.14 \times 10^{19}$ (Hz) energy = 1.4×10^{-14} (J) (ii) gradient = (-) μ	Photoelectric effect: Photon ejects / removes an electron (from the atom / metal) Compton (scattering): Photon emerges with less energy / longer wavelength / lower frequency and an electron escapes / ejected (from the atom) Pair-production: Photon produces an electron-positron (pair) Scattering: Photon is scattered by an electron PQWC: (Intensity decreases in the original direction because) there are fewer photons (i) $(E = \frac{hc}{\lambda})$ $(E =) \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{1.4 \times 10^{-11}}$ or $(f =) 2.14 \times 10^{19}$ (Hz) energy = 1.4×10^{-14} (J) A1 (ii) gradient = $(-) \mu$

2.

(a)		Quantum / packet of (electromagnetic) energy	B1	Allow: Particle of energy
		Any one from: Can travel in a vacuum / has speed of 3 × 10 ⁸ m s ⁻¹ in a vacuum / has no charge / has no (rest) mass / causes ionisation / has momentum	B1	Allow: Travels at the speed of light / c in a vacuum
(b)	(i)	number per second = $4.8 \times 10^{-3}/1.6 \times 10^{-19}$	M1	Note: This must be seen to gain a mark
		number per second = $3.0 \times 10^{16} \text{s}^{-1}$	A0	
	(ii)	(incident power =) $150 \times 10^3 \times 4.8 \times 10^3$ or (incident power =) $3.0 \times 10^{16} \times 150 \times 10^3 \times 1.6 \times 10^{-19}$	C1	Note an incident power of 720 (W) scores this C1 mark
		$(P = mc[\Delta\theta/\Delta t])$ $0.99 \times 720 = 0.0086 \times 140 \times [\Delta\theta/\Delta t]$	C1	
		rate of temperature increase = 590 (°C s ⁻¹)	A1	Note: Answer to 3 sf is 592 (°C s ⁻¹) Allow: 2 marks for 598 (°C s ⁻¹) or 600 (°C s ⁻¹); 99% omitted Allow: 2 marks for 1.97 × 10 ⁻¹⁴ (°C s ⁻¹); 3.0 × 10 ¹⁶ omitted
	(iii)	(photon energy = maximum KE of electron)		
		$E = 150 \times 10^{3} \times 1.6 \times 10^{-19}$ or $E = 2.4 \times 10^{-14}$ (J) $2.4 \times 10^{-14} = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{2}$ (Allow any subject)	C1	Allow : $E = 720/3.0 \times 10^{16}$
		$2.4 \times 10^{-12} = \frac{\lambda}{\lambda}$ (Allow any subject) wavelength = 8.3×10^{-12} (m)	A1	Allow : 1 mark 8.3×10^{-10} (m); $E = 2.4 \times 10^{-16}$ (J) used

(c)	Contrast material / iodine is injected (into the vessels)	B1	Not: barium for this B1 mark
	Any <u>one</u> from: The contrast material	B1	
	large attenuation / absorption coefficient	01	Not 'large μ'
	 has high Z (atoms) (and hence reveal the outline of the blood vessels) 		

3.

(a)	Gamma radiation will pass through the patient (and hence can be detected) / beta particles will be absorbed by the patient (and hence cannot be detected) Gamma radiation is not (very) ionising / gamma radiation does little damage to cells / beta particles are (very) ionising / beta particle damage cells	B1 B1	Allow: 'Body' in place of 'cells'
(b)	X-ray tube rotates around (the patient) / X-ray beam passes through the patient at different angles A thin X-ray beam is used Image(s) of slice(s) / (cross) section(s) through the patient are taken	B1 B1 B1	Not: Detector rotates around (the patient)
	X-ray tube moves / spirals along (the patient) The signals / information / pulses / data (from the detectors) are used by the computer (and its software) to produce a 3D image	B1 B1	Allow: Detectors moves / spirals along (the patient)

4.

(a)		Discrete energy (of electrons in an atom) / quantised energy (of electrons in an atom) / permitted energy (states of electrons in an atom).	B1	
	(ii)	$(E = \frac{hc}{\lambda})$ $E = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{7.2 \times 10^{-11}} \text{or} E = 2.763 \times 10^{-15} (\text{J})$ value of energy level = - (3.2 - 2.763) × 10 ⁻¹⁵ (J) value of energy level = - 4.4 × 10 ⁻¹⁶ (J)	C1 C1 A1	Note: The answer must be <u>negative</u> to score the A1 mark Note: 4.4×10^{-16} (J) scores 2 marks
	(iii)	$(\lambda_0 \text{ is})$ halved. Explanation: Reference to (photon / electron kinetic) energy doubled and E = hc/λ or $E \propto 1/\lambda$.	M1 A1	Allow explanation in terms of $eV = hc/\lambda$.
(b)	(i)	$(I=I_0e^{-\mu x})$ fraction transmitted = $e^{-(0.96\times2.3)}$ fraction transmitted = 0.11 fraction absorbed or scattered = 1 – 0.11 fraction absorbed or scattered = 0.89	C1 C1	Allow 3 marks for 89%. Allow 89/100
	(ii)	Bone and muscle have different (values for) μ hence better contrast. or Muscle and fat have similar (values for) μ hence poor contrast.	B1	