## The Method of Iteration to Solve Equations

1.

- **a** Show that the equation  $x^6 5x + 3 = 0$  has a root between x = 1 and x = 1.5.
- **b** Use the iteration formula  $x_{n+1} = \sqrt[5]{5 \frac{3}{x_n}}$  to find an approximation for the root of the equation  $x^6 - 5x + 3 = 0$ , giving your answer to 2 decimal places.

2.

The equation  $3x - 2x^3 + 5 = 0$  has one solution. (8)



- a) Show that this solution lies in the interval 1.5 < x < 2.
- b) Show that  $3x 2x^3 + 5 = 0$  can be written as:

$$x = \sqrt[3]{\frac{3x+5}{2}}$$

c) Use the iteration  $x_{n+1} = \sqrt[3]{\frac{3x_n + 5}{2}}$  to find the solution to  $3x - 2x^3 + 5 = 0$  to 5 d.p. Use a starting value of  $x_0 = 2$ .

3.

- Show that the equation  $x^2 3x 5 = 0$  can be rewritten in the form  $x = \sqrt{3x + 5}$
- b Using  $x = \sqrt{3x + 5}$  with  $x_0 = 4$ , use iteration to find one root of the equation  $x^2 - 3x - 5 = 0$ , giving your answer correct to 5 d.p.

4.

Use iteration to find one root of each of these equations, giving your answers correct to 5 d.p.

a 
$$x^2 - 4x - 4 = 0$$
, use  $x_0 = 5$ 

$$x^2 - 6x - 8 = 0$$
, use  $x_0 = 7$