Mark Scheme

Year 13 Physics

Mock Test

Time Allowed: 2 Hours

Total Marks: 100

15 April 2023

Calculator Allowed

1.

a		(The sum of) the random kinetic; and potential energies of the	1	2
		atoms/molecules/particles of the gas	1	
		omitting atoms/molecules/particles scores zero marks		
b	i	n = pV/RT; = $2.8 \times 10^5 \times 2.1 \times 10^{-3}/(8.3 \times 288)$; = 0.246 (mol)	3	
	ii	p/T = constant; T = (290/280) x 288 = ; 298 K = 25 °C	3	
		using pV = nRT with n = 0.25 mol gives 20 °C also possible ecf		
		from b(i)		
	iii	ratio = $T_2/T_1 = p_2/p_1 = 1.03$ or 1.04 or 1.02; internal energy α T	2	8

(a)	(i)	Arrow (labelled F) directed towards centre of circle	B1	Allow: arrow drawn parallel to the string
	(ii)	Resultant force (F) acts at 90° to motion / velocity of bung	B1	Allow: No component of F acts in the direction of motion (B1)
		so no work done is done by F (hence no change in speed)	B1	hence there is no acceleration in the direction of motion (AW) (B1)
(b)	(i)	Student <u>tries to</u> rotate bung at <u>constant</u> radius / <u>tries to</u> keep reference mark at end of tube (AW)	B1	Not: bald 'constant radius'
		Force F is calculated using $F = Mg$, where M is mass of slotted masses	B1	Not : F = weight
		Measure time t for n revolutions of the bung (hence calculate T for 1 revolution).	B1	Not: 'take time for 1 revolution'
		Measure radius r when <u>stationary</u>	B1	
		Calculate v using $2\pi r n/t$ (or $2\pi r/T$).	B1	
	(ii)	Straight line of positive gradient passing through the origin	B1	
		$F = \frac{m}{r} v^2 \text{hence gradient} = \frac{m}{r}$	B1	Cannot award this mark if graph is curved
		Mass = gradient (of graph) x radius (of orbit)	B1	Can score this mark if graph is curved

(a)		Is in the opposite direction to the displacement Increases as the speed of the object decreases	B1 B1	If more than 2 ticks are given mark all and deduct 1 mark for each error
(b)	(i)	$f = \frac{1}{T} = \frac{1}{1.2}$ $f = 0.83 \text{ (Hz)}$	B1	Allow: the fraction 5/6 only
	(ii)	$V_{\text{max}} = (2\pi f) A$		Possible ecf from (b)(i)
		$0.08 = (2\pi \times 0.83)A$	C1	Note: Mark is for substitution; any subject
		$A = \frac{0.08}{(2\pi \times 0.83)} = 0.015 \text{(m)}$	A1	Answer is 0.0153 (m) to 3 sf
	(iii)	$a_{\text{max}} = (2\pi f)^2 A$		Possible ecf from (b)(i) and (ii)
		$a_{\text{max}} = (2\pi \times 0.83)^2 \times 0.015$	C1	Note: Mark is for substitution
		$a_{\text{max}} = 0.42 \text{ (m s}^{-2})$	A1	Ignore sign Expect to see 0.41 if 2 sf values are used Allow: tangent used at $v = 0$ (M1) gradient of tangent calculated in range 0.37 to 0.44 (m s ⁻²) to 2sf (A1). Accept gradient of tangent =0.4 (m s ⁻²)
(c)	(i)	Graph(s) tending to single peak with axes labelled in words or appropriate symbols Peak labelled as $\underline{\text{natural / resonant}}$ frequency (of system) or f_o	B1 B1	Can be scored even if horizontal axis is not correctly labelled
		 Resonance occurs when the <u>driving frequency</u> matches <u>natural / resonant</u> 	B1	ooneed, labelled
		frequency (of system) • the <u>amplitude</u> of vibrations / energy (transferred) is then a <u>maximum</u> (AW)	B1	
	(ii)	A valid example of resonance	B1	Allow: Mirror in car, Washing machine, Child on swing, microwave (oven), radio (tuning), Structures (in wind etc) MRI
		Explanation to include what does the driving and what is being driven		Not musical instruments
		that this occurs at specific (driver) frequency	B1	

(a)	coulomb per volt	B1	Allow: 1 F = 1 <u>CV⁻¹</u>
(b) (i)	Electrons flow 'clockwise' / negative to positive	B1	
	These are deposited on (plate) A (and hence becomes negatively charged) or These are removed from (plate) B (and hence become positively charged)	B1	Not: A becomes negative / B becomes positive
(ii)1			
	charge = 6.48 × 10 ⁻⁸ (C)	B1	
(ii)2	energy = $\frac{1}{2}V^2C = \frac{1}{2} \times 12^2 \times 5.4 \times 10^{-9}$		Describle and if O wood from (!!)
	energy = 3.89×10^{-7} (J)	B1	Possible ecf if Q used from (ii)1
c) (i)	$R = \frac{12}{3.24 \times 10^{-6}}$	M1	Allow : ' $R = 12/3.24\mu$ ' (= 3.7 M Ω)
	resistance = $3.7 \times 10^6 (\Omega)$	A0	
(ii)	time constant = CR = $5.4 \times 10^{-9} \times 3.7 \times 10^{6}$ or 0.02 (s)	C1	
	$I = I_0 e^{-t/CR} = 3.24 \times e^{-(0.080/0.020)}$		
	current = 0.059 (μA)	A1	Allow: ecf for time constant Allow: 1 mark for 5.9 × 10 ⁻ⁿ
(d)	(Total) resistance of circuit <u>halved</u> / time constant is <u>halved</u>	B1	
	Rate of discharge is <u>doubled</u> / (initial) current is <u>doubled</u>	B1	

(a)		Force is proportional to the product of the masses and inversely proportional to the square of their separation (AW)	B1	Allow: $F = \frac{GmM}{r^2}$ with all symbols defined.
(b)	(i)	$mg = \frac{GmM_J}{r^2}$	C1	Allow: formula with m cancelled
		$M_J \left(= \frac{g r^2}{G} \right) = \frac{7.5 \times \left(1.3 \times 10^8 \right)^2}{6.67 \times 10^{-11}}$	C1	Allow: use of $T^2 = \frac{4\pi^2 r^3}{GM_J} \Rightarrow M_J = \frac{4\pi^2 (1.3 \times 10^8)^3}{6.67 \times 10^{-11} \times (7.2 \times 60^2)^2}$ Note: mark is for substitution with any subject
		$M_J = 1.9 \times 10^{27}$ (kg)	A1	
	(ii)	$\frac{g_{M}}{g_{A}} = \frac{r_{A}^2}{r_{M}^2}$		Allow: use of $g = \frac{GM_J}{r^2}$ with possible ecf for M_J from (b)(i)
		$\frac{g_{M}}{7.5} = \frac{\left(1.3 \times 10^{8}\right)^{2}}{\left(2.4 \times 10^{10}\right)^{2}}$	C1	$g_M = \frac{\left(6.67 \times 10^{-11}\right) \times \left(1.9 \times 10^{27}\right)}{\left(2.4 \times 10^{10}\right)^2}$ Note: mark is for
		$g_{\rm M} = 2.2 \times 10^{-4} ({\rm N kg^{-1}})$		substitution
			A1	$g_{\rm M} = 2.2 \times 10^4 \text{ (N kg}^{-1)}$
	(iii)	$T^2 \propto r^3$ OR $T^2/r^3 = \text{constant} (= 4\pi^2/GM_J)$	C1	Allow: possible ecf for M_J from b(i) Allow: use of other correct formulae
		$\frac{T_{M}^{2}}{7.2^{2}} = \frac{\left(2.4 \times 10^{10}\right)^{3}}{\left(1.3 \times 10^{8}\right)^{3}}$	C1	Note: mark is for substitution
		$T_{\rm M} = 1.8 \text{ x} 10^4 \text{ (hours)}$	A1	Note using times in seconds gives $T_M = 6.49 \text{ x} 10^7$ (s) scores 2 marks

(a)	using $Q = mc\Delta\theta$	
	= 3.00 × 440 × (84-27) ✓	2
	7.5 × 10⁴(J) ✓	
(b)	using Q = ml	
	$= 1.20 \times 2.5 \times 10^4$	1
	$= 3.0 \times 10^4 (J) \checkmark$	
(c)	(heat supplied by lead changing state + heat supplied by cooling lead = heat gained by iron)	
	3.0 × 10 ⁴ + heat supplied by cooling lead = 7.5 × 10 ⁴ ✓	
	heat supplied by cooling lead = $4.5 \times 10^4 = mc\Delta\theta$	3
	$c = 4.5 \times 10^4 / (1.2 \times (327 - 84) \checkmark$	
	$c = 154 (J kg^{-1} K^{-1}) \checkmark$	
(d)	any one idea ✓	
	no allowance has been made for heat loss to the surroundings	1
	or the specific heats may not be a constant over the range of temperatures calculated	

(a)		 Any two from: Direction of the field (is incorrect) (AW) The field lines should be curved / not straight (lines) The field line(s) should be perpendicular at the plate(s) The separation between the field lines cannot be the same / diagram shows a uniform field 	B1×2	Allow answers on Fig. 2.1
(b)	(i)	gradient = 1.25×10^{-7}) ($Q = \text{gradient} \times 4\pi \times 8.85 \times 10^{-12}$) charge = 1.4×10^{-17} (C)	C1 A1	Ignore POT Allow gradient in the range 1.20 to 1.30 (× 10 ⁻⁷) Allow full credit for substitution method ECF from incorrect value of calculated gradient
(b)	(ii)	The gradient decreases	B1	Allow E is smaller for the same r
(c)	(i)	Explanation: Q decreases / there are fewer protons	B1	Allow other correct methods
		$(E =) \frac{1.5(\times 10^3)}{2.10(\times 10^{-2})}$ or 7.14×10^4) (mass of droplet = $\frac{4}{3}\pi r^3 \times \rho$ =) 8.15×10^{-15} (kg)	C1	Ignore POT
		(electrical force = weight / EQ = mg)		Note there is no ECF for incorrect <i>E</i> or mass values
		$7.14 \times 10^4 \times Q = 8.15 \times 10^{-15} \times 9.81$ (Any subject) and hence charge = $1.1(2) \times 10^{-18}$ (C)	A1	Allow 1 mark for a bald $1.1\underline{2} \times 10^{-18}$ (C); answer to 3 SF or more but a bald 1.1×10^{-18} C scores zero
(c)	(ii)	(number of electrons = $\frac{1.12 \times 10^{-18}}{1.6 \times 10^{-19}}$ =) 7 (An <u>integer</u>)	B1	Note there is no ECF from (i) since 1.1×10^{-18} C is given Not 6.88 or 6.9 when using 1.1×10^{-18} C, but allow either of the integers 7 or 6

8.

а	(i)	absorbs enough energy (from the incident) electron(by collision) OR incident electron loses energy (to orbital electron) ✓ exact energy/10.1((eV) needed to make the transition/move up to level 2✓	2	For second mark must imply exact energy
а	(ii)	(use of $E_2 - E_1$) = hf -3.41 13.6 = 10.19 \checkmark energy of photon = 10.19 × 1.6 × 10 ⁻¹⁹ = 1.63 × 10 ⁻¹⁸ (J) \checkmark 6.63 × 10 ⁻³⁴ × f = 1.63 × 10 ⁻¹⁸ f = 2.46 × 10 ¹⁵ (Hz) \checkmark (accept 2.5 but not 2.4)	3	CE from energy difference but not from energy conversion
а	(iii)	Ek = $1.7 \times 10^{-18} - 1.63 \times 10^{-18} \checkmark = 7.0 \times 10^{-20} \text{ J}\checkmark$	2	
a	(iv)	energy required is 12.09 eV/1.9 × 10 ⁻¹⁸ ✓ energy of incident electron is only 10.63 eV/energy of electron less than this (1.7 × 10 ⁻¹⁸ J)✓	2	State and explain must have consistent units i.e. eV or J
b	(i)	Electrons return to lower levels by different routes/cascade/not straight to ground state√	1	
b	(ii)	3√ n= 3 to n=1 or n=3 to n=2 and n=2 to n=1√	2	no CE from first mark

(a)	The induced e.m.f.	(1)	
	Is equal/proportional to the rate of change of (magnetic) flux (linkage) Or $\varepsilon = (-) d(N\Phi)/\Delta t$ with symbols defined	(1)	2
(b)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	the idea that due to the magnet moving there is a changing field around the ring	(1)	
	An e.m.f. induced (in a closed circuit hence a current flows)	(1)	
	Change in direction of magnet, changes the direction of e.m.f./current	(1)	
	Magnitude of e.m.f. (and current) depends on the rate of change of flux linkage Or magnitude of e.m.f. (and current) depends on position/ speed of magnet	(1)	4

Use of area $A = \pi r^2$ (1)
Use of $\varepsilon = BA/t$ (1)
Use of I = V/R (1) I = 4.1 A (1)
(accept 4.1 - 4.2 A depending on where rounding is done)
(candidates who use a circumference instead of an area can only score MP3) $\frac{\text{Example of calculation}}{\text{Area of coil} = \pi \times (0.05 \text{ m})^2 = 7.9 \times 10^{-3} \text{ m}^2}$ $\varepsilon = BA/t = 0.035 \text{ T s}^{-1} \times 7.9 \times 10^{-3} \text{ m}^2 = 2.8 \times 10^{-4} \text{ V}$ $I = \varepsilon/R = 2.8 \times 10^{-4} \text{ V} / 6.7 \times 10^{-5} \Omega$ I = 4.1 A

l0. a		²³³ 91Pa ✓	
		anti (electron) neutrino ✓	2
b		neutron number 143	2
		90 91 92 93 94 proton number Z	
С	i	x = 4 ✓	1
С	ii	mass defect = [(232.98915 + 1.00867) – (90.90368 + 138.87810 + 4 × 1.00867)] u ✓ = 0.18136 u ✓	3
		energy released (= 0.18136 × 931) = 169 (MeV) ✓	