Mixed Exercise 7

1.

(a)	$5 \times 2^2 - 8 \times 2 + 4^2 - 2 \times 4$	M1	oe Allow one error
	12	A1	
(b)	$5x^2 - 8x + (3)^2 - 2(3)$ (= 0)	M1	Allow one error
	$5x^2 - 8x + 3 \ (= 0)$	A1	
	(5x+a)(x+b) (=0)	M1	ab = 3 or $a + 5b = -8$
			or $x = \frac{8 \pm \sqrt{(8^2 - 4 \times 5 \times 3)}}{2 \times 5}$ Allow one error
	$\frac{3}{5}$ and 1	A1ft	oe ft their quadratic

2.

(a)	2n + 1 or $1 + 2n$	B1	
(b)	(2n-1)(2n+1)	M1	oe eg $(2n+1)(2n+3)$ or $(2n-3)(2n-1)$
	$4n^2 - 2n + 2n - 1$ or $4n^2 - 1$	A1	oe eg $4n^2 + 2n + 6n + 3$
			or $4n^2 - 6n - 2n + 3$
	$4n^2$ is a multiple of 4 so $4n^2 - 1$ is one less	A1	oe clear explanation from their (correct) expression

a	2x + 5 or $5 + 2x$	B1	
b	$\frac{7x-5}{2x+5} = \frac{8}{3}$ or $3(7x-5) = 8(2x+5)$	M1	oe eg $(5x - 10) \equiv 5$ parts and $\frac{2x + 5}{5x - 10} = \frac{3}{5}$
	21x - 15 = 16x + 40	M1	oe eg $10x + 25 = 15x - 30$ Allow one error
			Allow one entor
	x = 11	M1	
	99	A1	oe eg 77 in A and 22 in B SC1 for correct answer with no algebra

x - 1 = 3(y - 2) or x + 6 = 4(y - 1)	M1	oe Rearranging one of the two equations $x - 1 = 3y - 6$ or $x + 6 = 4y - 4$
$x - 3y = -5 \qquad \text{oe}$	M1	ft from their equations (no further errors)
x - 4y = -10 oe	M1	oe eg attempts substitution and rearranges to a suitable form (earns M2)
x = 10 or y = 5	A1ft	Correct elimination from their equations if at least M1 earned
x = 10 and $y = 5$	A1	SC1 for $x = 10$ and $y = 5$ from no (or incorrect) working

5.

(ax + b)(cx + d)	M1	Where ac = 4 and bd = ± 5 or ad + bc = ± 19
(4x-1)(x+5)	A1	
(3x-4)(3x+4)	B1	
their $\frac{(4x-1)(x+5)}{(3x-4)(3x+4)} \times \frac{(3x-4)}{(x+5)}$	M1	Inverting the 2nd fraction and multiplying Must have attempted to factorise both expressions (allow max one error in each)
$\frac{4x-1}{3x+4}$	A1	

(a)	$x^2 + mx + nx + mn$	B1	oe
(b)	(q =) m + n	B1ft	oe ft their (a)
	$(r =) m (\times) n$	B1ft	oe ft their (a)
(c)	Any complete explanation eg	B2	B1 Any partial explanation
	<pre>m and n are both odd (integers) and odd (integer) + odd (integer) = even (integer) (so q is even)</pre>		eg1 m and n are odd (integers) eg2 odd × odd = odd and odd + odd = even

	ı	,
A = (4, 0)	B1	
B = (0, 8)	B1	
C = (-2, 12)	B1	
D = (0, 36) or $E = (-3, 0)$	B1	
Correct area for one of their triangles	M1	Using their coordinates of Δ AEC or Δ BCD
3:2	A1	Accept 2:3
Alternative method		
AB = 2, BC = 1, EC = 1, CD = 2	B1	oe
$\frac{1}{2} \times EC \times AC \times \sin ECA$	M1	$\frac{1}{2}ab\sin C$ statement for either triangle
or		
$\frac{1}{2} \times BC \times DC \times \sin BCD$		
$\frac{1}{2} \times 1 \times 3 \times \sin ECA$	A1	
$\frac{1}{2} \times 1 \times 2 \times \sin BCD$	A1	
sin ECA = sin BCD since these angles are supplementary	B1	oe must be clearly explained
3:2	A1	Accept 2:3

(a)	Line from (-4, 4) to (-2, 4)	B1	
	Curve through (-2, 4) (-1, 1) (0, 0) (1, 1) and (2, 4)	B1	$\pm \frac{1}{2}$ square
	Line from (2, 4) to (4, -4)	B1	
(b)	3	B1ft	ft their graph
(c)	12 - 4x = -10	M1	oe
	5.5	A1	oe

$\angle ACB = x$ and (Triangle ABC is) isosceles	M1	oe
$\angle ABC = 180 - 2x$ and Angle sum of triangle (is 180°)	M1	oe $\angle CAD + \angle ACD = 180 - 2x$ and Angle sum of triangle (is 180°)
180 – 2x + 2x = 180 and Opposite angles of cyclic quadrilateral (add up to 180°)	A1	Must have seen working for both M marks oe eg ∠ABC + ∠ADC = 180 and Opposite angles of cyclic quadrilateral SC2 'Correct' solution with one reason missing SC1 'Correct' solution with >1 reason missing

(a)	-0.5	B1	oe
(b)	$-1 \le f(x) \le 0$	B2	B1 $-1 \le f(x) \le c$ $c \ne 0$ $c > -1$ or $d \le f(x) \le 0$ $d \ne -1$ $d < 0$ SC1 Correct sketch of $y = \sin x$ with 180, 360 and -1 labelled on axes
(c)	90	B1	