1.	
	$w \checkmark h$ is defined as $5w^2 - 8w + h^2 - 2h$
	For example $1 \mathbf{\nabla} 6 = 5 \times 1^2 - 8 \times 1 + 6^2 - 2 \times 6$ = 5 - 8 + 36 - 12 = 21
(a)	Work out 2 ▼ 4
	Answer (2 marks)
(b)	Solve $x \mathbf{\nabla} 3 = 0$
	Answer

(a)	<i>n</i> is a positive integer.
	Write down the next odd number after $2n - 1$
	Answer (1 mark)
(b)	Prove that the product of two consecutive odd numbers is always one less than a multiple of 4.
	(3 marks)

3.

2.

Bag A contains 7x counters.

Bag *B* contains 2x counters.

Five counters are taken from bag A and put in bag B.

(a) Write an expression, in terms of x, for the number of counters now in bag B.

Answer...... (1 mark)

Use algebra to work out the total number of counters in the bags.
Answer

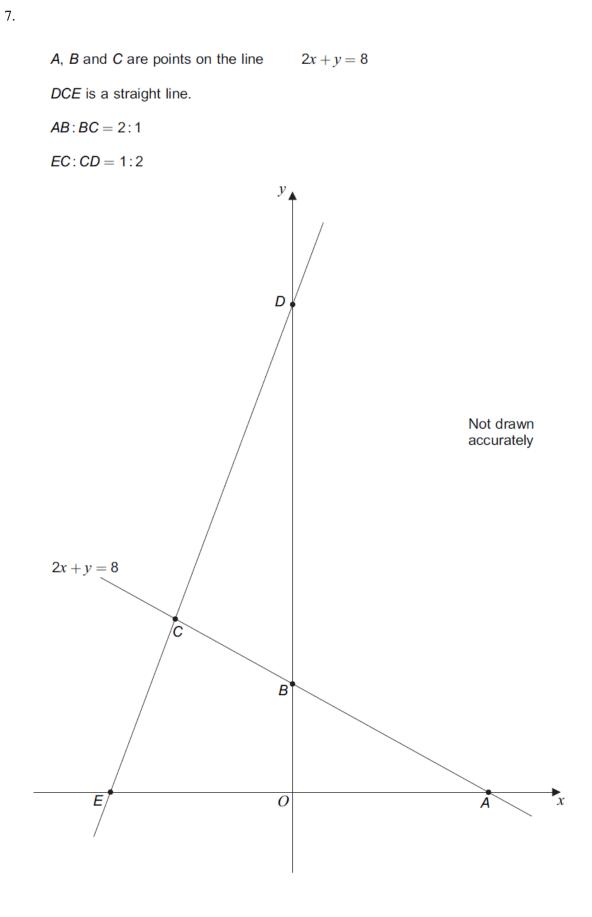
The ratio of counters in bag A to bag B is now 8:3

4.

(b)

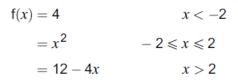
Solve the simultaneous equations

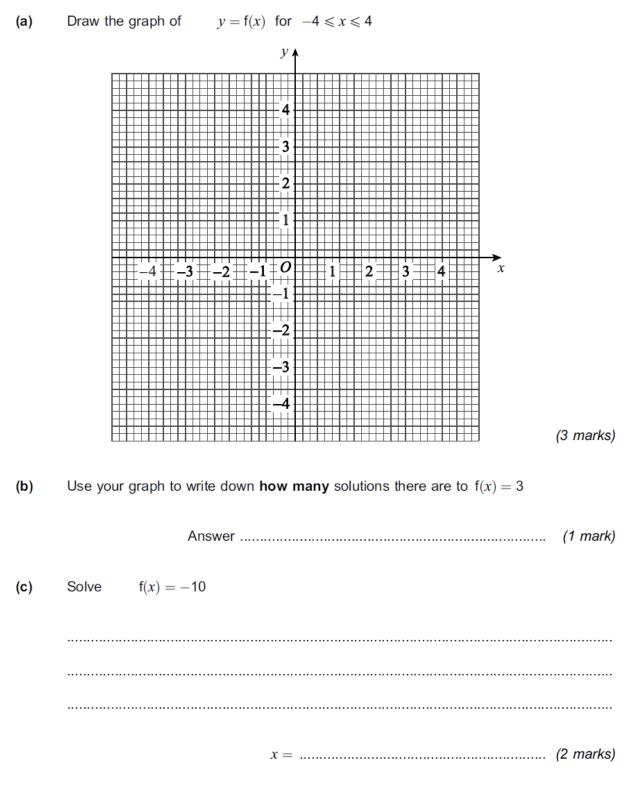
$$\frac{x-1}{y-2} = 3$$
 $\frac{x+6}{y-1} = 4$


Do **not** use trial and improvement. You **must** show your working.

5.

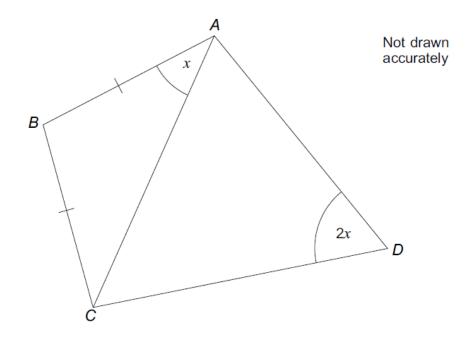
Simplify fully $\frac{4x^2}{3}$


$x^2 + 19x - 5$		<i>x</i> +5
$9x^2 - 16$	•	3x - 4


..... 6. Expand (x+m)(x+n)(a) $x^2 + qx + r \equiv (x+m)(x+n)$ (b) Use your answer to part (a) to write q and r in terms of m and n. *q* = $r = \dots$ (2 marks) r is an odd integer. (c) Use your answer to part (b) to explain why q is an even integer. (2 marks)

Work out the ratio	Area of triangle AEC : Area of triangle BCD					
Give your answer in its simplest form.						
Ans	swer					

8.



-8-

In the diagram, AB = BC

9.

Prove that *ABCD* is a cyclic quadrilateral. Give reasons for any statements you make.

(3 ma	rks)

10.

$$\begin{aligned} \mathsf{f}(x) &= \sin x & 180^\circ \leqslant x \leqslant 360^\circ \\ \mathsf{g}(x) &= \cos x & 0^\circ \leqslant x \leqslant \theta \end{aligned}$$

(a) Calculate the value of f(210°).

(b) Complete this inequality for the range of f(x).

(c) You are given that $0 \le g(x) \le 1$

Work out the value of $\boldsymbol{\theta}$.