(a)	(i)	A (constant) force acts at right angles to the velocity / motion (of the helium nucleus).	B1	Note: The answer must be in terms of force and not acceleration. Allow 'force is towards the centre of the circle'. Not 'there is a <i>centripetal</i> force' - unless explained. Not 'force is right angles to <u>speed</u> '.
(a)	(ii)	No work done (by the force) / no acceleration in the direction of motion / no force in direction of motion	B1	Allow force / acceleration is at right angles to velocity / motion.
(b)		$BQv = \frac{mv^2}{r}$ or $mv = BQr$ momentum = $0.20 \times 10^{-3} \times 3.2 \times 10^{-19} \times 0.15$ momentum = 9.6×10^{-24} (kg m s ⁻¹)	C1 C1 A1	Allow $v = 1.45 \times 10^3$ (m s ⁻¹); $p = 1.45 \times 10^3 \times 6.6 \times 10^{-27}$
(c)		$v = 9.6 \times 10^{-24}/6.6 \times 10^{-27}$ or $v = 1.45 \times 10^{3} \text{ (m s}^{-1)}$	C1	Possible ecf from (b)
		KE = $\frac{1}{2} \times 6.6 \times 10^{-27} \times (1.45 \times 10^{3})^{2}$ KE = 7.0×10^{-21} (J)	A1	Allow 1 sf answer Alternative: $(E = p^{2}/2m); \text{ KE} = \frac{(9.6 \times 10^{-24})^{2}}{2 \times 6.6 \times 10^{-27}} \qquad \text{C1}$ $\text{KE} = 7.0 \times 10^{-21} \text{ (J)} \qquad \qquad \text{A1}$
(d)		The helium nucleus moves to the right.	B1	Not if the path is shown as a straight line.
		The path is a clockwise curve / looped (in the plane of the paper).	B1	Allow 2 marks for clockwise curve / loop to the right. Allow 1 mark for a sketch showing an 'upward curve to the right'

a		Positive as E-field is downwards/top plate is positive/like charges		
		repel/AW	1	1
b	i	k.e. = QV; = $300 \times 1.6 \times 10^{-19} = (4.8 \times 10^{-17} \text{ J})$	2	
	ii	$1/2\text{mv}^2 = 4.8 \times 10^{-17}$; = 0.5 x 2.3 x 10^{-26} x v^2 so $v^2 = 4.17 \times 10^9$;	2	4
		(giving $v = 6.46 \times 10^4 \text{ m s}^{-1}$)		
c		$E = V/d$; so $d = V/E = 600/4 \times 10^4 = 0.015 \text{ m}$	2	2
d	i	semicircle to right of hole $ecf(a)$; (a) and $d(i)$ to be consistent	1	
	ii	mv^2/r ; = BQv;	2	
		giving $r = mv/BQ = 2.3 \times 10^{-26} \times 6.5 \times 10^4/(0.17 \times 1.6 \times 10^{-19});$	1	
		r = 55 mm; so distance = $2r = 0.11 m$	2	6

(a)	(i)	(weight = BIL) $6.8 \times 10^{-5} = 0.070 \times I \times 0.01$ (Any subject) I = 0.097 (A)	C1 A1	
	(ii)	The force on the cables will keep changing direction	B1	
(b)	(i)	$BQv = mv^2 / r$ $r = \frac{mv}{BQ}$	M1 A1	Allow e, q instead of Q Note: r must be the subject of this equation
	(ii)	$(p = mv = BQr, KE = \frac{1}{2} p^2/m)$ $KE \propto r^2$ $ratio = \frac{4.8^2}{1.2^2}$ $ratio = 16$	C1 A1	Allow full credit for correct alternative approaches Allow 16: 1

(a)		The induced e.m.f. is (directly) proportional / equal to the rate of change of (magnetic) flux linkage.	B1	Allow $E = \frac{\Delta \Phi}{\Delta t}$ with all terms defined; E = induced e.m.f., Φ = (magnetic) flux linkage and t = time.
(b)		North / N (pole). There is a repulsive force (between magnet and coil and the work done against this repulsive force is transferred to electrical energy in the coil).	B1	Allow - A south (pole) would cause attraction (between the coil and magnet) or there is gain in KE (of magnet which cannot happen hence it must be north pole).
(c)	(i)	There is no change in (magnetic) flux (linkage) or there is no change in the (magnetic) flux density.	B1	Allow 'no change in (magnetic) field strength'.
	(ii)	E = 0 between 0 to 3 cm, 5 – 8 cm and 10 - 12 cm.	B1	Tolerance: ± 1/4 large square
		Two 'pulses' where B is changing. The pulses have opposite signs.	M1 A1	Note : The pulses must have $E = 0$ at 3 cm, 5 cm, 8 cm and 10 cm; tolerance $\pm \frac{1}{4}$ large square.

а		direction of induced emf (or current) ✓ opposes change (of magnetic flux) that produces it ✓	2	
b	i	(volumes are equal and mass of Q is greater than that of P) density of steel > density of aluminium ✓	1	Allow density of Q greater (than density of P).
b	ii	use of $s = \frac{1}{2}gt^2$ gives $t^2 = \frac{2 \times 1.0}{9.81}$ (from which $t = 0.45 \text{ s}$) \checkmark (vertical) acceleration [or acceleration due to gravity] is independent of mass of falling object [or correct reference to $F = mg = ma$ with m cancelling]	2	Backwards working is acceptable for 1 st mark. 2 nd mark must refer to mass. Do not allow "both in free fall" for 2 nd mark.

С	i	moving magnet [or magnetic field] passes through tube \checkmark there is a change of flux (linkage)(in the tube) [or flux lines are cut or appropriate reference to $\varepsilon = N (\Delta \Phi/\Delta t)$] \checkmark [Alternative: (conduction) electrons in copper (or tube) acted on by (moving) magnetic field of Q \checkmark induced emf (or current) is produced by redistributed electrons \checkmark]	2	In this part marks can be awarded for answers which mix and match these schemes.
С	ii	emf produces current (in copper) ✓ this current [allow emf] produces a magnetic field ✓ this field opposes magnetic field (or motion) of Q [or acts to reduce relative motion or produces upward force] ✓ no emf is induced by P because it is not magnetised (or not magnet) [or movement of P is not opposed by an induced emf or current] ✓	max 3	Alternative to 3 rd mark: current gives heating effect in copper and energy for this comes from ke of Q ✓
d		time for P is unaffected because there is still no (induced) emf [or because P is not magnetised or because there is no repulsive force on P] ✓ time for Q is shorter (than in (c)) ✓ current induced by Q would be smaller ✓ because resistance of brass ∞ resistivity and is therefore higher [or resistance of brass is higher because resistivity is greater] ✓ giving weaker (opposing) magnetic field [or less opposition to Q's movement] ✓	max 3	Condone "will pass through faster" for 2 nd mark. If emf is stated to be smaller for Q, mark (d) to max 2.

		1	
(a)		current $I\left(=\frac{F}{Bl}\right) = \frac{1.4 \times 10^{-3} \times 9.81}{45 \times 10^{-3} \times 40 \times 10^{-3}} \checkmark = 7.6(3) \text{ A} \checkmark$	2
(b)	(i)	magnetic flux change Φ (= BA)	
		= 45 × 10-3 × 40 × 10 ⁻³ × 20 × 10 ⁻³ ✓	
		= 3.6 × 10 ⁻⁵ Wb ✓	
	(ii)	use of $\in =\frac{\Delta \Phi}{\Delta t}$ \checkmark gives time taken $\Delta t = \frac{3.6 \times 10^{-5}}{0.15 \times 10^{-3}}$ \checkmark	
		= 0.24 s ✓	5
		[alternative for (ii)	
		$v\left(=\frac{\epsilon}{Bl}\right) = \frac{0.15 \times 10^{-3}}{45 \times 10^{-3} \times 40 \times 10^{-3}} \checkmark = 8.33 \times 10^{-2} (\text{m s}^{-1}) \checkmark$	
		$\Delta t = \frac{l}{v} = \frac{20 \times 10^{-3}}{8.33 \times 10^{-2}} = 0.24 \text{s} \checkmark]$	

а	i	BA / = $0.05 \times 0.05 \times 0.026$; = 6.5×10^{-5} ; Wb/T m ²	3	
-	ii	BA sin 45°/BAcos 45° = 4.6 x 10 ⁻⁵ Wb ecf (a)i	1	
	iii	0	1	5
b	i	a point where curve crosses t-axis	1	
	ii	voltage is proportional to the rate of change of flux linking the coil; rate of	1	
		flux change is zero/very small when the flux linking the coil is a maximum	1	
	iii	sinusoidal curve; of double the amplitude; and half the period	3	6

(a)(i)	meter deflects then returns to zero ✓ current produces (magnetic) field/flux ✓ change in field/flux through Q induces emf ✓ induced emf causes current in Q (and meter) ✓	Deflection to right (condone left) then zero is equivalent to 1 st mark. Accept momentary deflection for 1 st point. "change in field/flux_induces current in Q" is just ✓ from the last two marking points.	max 3
(a)(ii)	meter deflects in opposite direction (or to left, or ecf) ✓ field/flux through P is reduced ✓ induces emf/current in opposite direction ✓	Ignore references to magnitude of deflection.	max 2
(b)(i)	flux linkage $(= n\Phi = nBA) = 40 \times 0.42 \times 3.6 \times 10^{-3}$ = 6.0(5) × 10 ⁻² \checkmark Wb turns \checkmark	Unit mark is independent. Allow 6×10^{-2} Accept 60 mWb turns if this unit is made clear. Unit: allow Wb	2
(b)(ii)	change in flux linkage = $\Delta(n\Phi)$ = 6.05 × 10 ⁻² (Wb turns) \checkmark induced emf $\left(=\frac{\Delta(n\Phi)}{\Delta t}\right) = \frac{6.05 \times 10^{-2}}{0.50} = 0.12(1)$ (V) \checkmark	Essential to appreciate that 6.05×10^{-2} is <i>change in</i> flux linkage for 1 st mark. Otherwise mark to max 1.	2