Mark Scheme - Past Paper 10

Question		ion	Expected Answers	Marks	Additional guidance
1	а	i	Force is proportional to the <u>rate of change</u> of <u>momentum</u>	B1	Allow "equal" instead of proportional, allow
l			(QWC This mark can only be scored if momentum is spelled correctly)		"change in momentum over time" (WTTE)
					Do not allow F = ma or in words
l		ii	When one body exerts a force on another the other body exerts an equal (in		Must refer to two bodies. Do not allow a bare
			magnitude) and opposite (in direction) force on the first body (WTTE)	B1	"Action and reaction are equal and opposite".
l	b	i	area: number of squares correctly counted: 20 - 24 (500 - 600)	C1	First mark for correct number of squares
l			= 2.2 Ns {allow 2.0 to 2.4}	A1	Second mark for correct conversion to Ns
l			, ,		If 2 ∆s assumed, area = 1.68 Ns and scores
l					1 mark
l					1680 scores 0 (2 errors) but 2200 scores 1
					mark
		ii	Impulse QWC must be spelled correctly	B1	No not allow change of momentum.
		III	recall of Impulse = change in momentum OR I = mv OR mv -mu	C1	Allow 'Area = mv'
l			(mv = 2.2 hence v = 2.2/0.046) v = 47.8 ms ⁻¹ (hence about 50)	A1	Allow ecf from cand's value for (b)(i):
l			(2.0 gives 43.5, 2.1 45.7, 2.3 50, 2.4 52.2)		e.g. mv = 1.68 v = 36.5 ms ⁻¹ and scores 2
l			,,		marks
l					mv = 2200 v = 47800 ms ⁻¹ also scores
	Ш				2marks! (ecf)
l		įν	initial horizontal velocity = 50cos42 = (37.2 ms ⁻¹)	C1	Allow 1 mark for correct identification of
l			initial vertical velocity = 50sin42 = (33.5 ms ⁻¹)	C1	cosine and sine components of v, without
l			time taken to reach maximum height = 33.5/9.8 (= 3.41 s)	C1	substitution.
l					Allow ecf for cand's value of v throughout
l			total time to reach ground = 2x 3.41 = 6.82 s hence distance = 50cos42xtotal	A1	e.g if 47.8 is used for v, distance = 232 m and
l			time = 37.2x6.82 = 253 m		this scores four marks.
				B4	if 47800 is used distance = 2.32 x 108 m!
			any valid assumption: eg no air resistance / horizontal velocity is constant/	B1	
l			acceleration due to gravity is 9.8 (or 10) ms ⁻² / ball follows a parabolic or		Also allow "only the gravitational force is
			symmetrical path (WTTE).		acting" "no friction" "only gravity"
			Total	12	

Question		on	Expected Answers	Marks	Additional guidance
2	а	i	$(v = 2\pi r/t) t = 2\pi 60/0.26 = 1450 s$	B1	Correct answer is 1449.96 hence allow 1.4 X 10 ³
			(* =::::7: =:::2:2:		Do not allow a bare 1.5 x10 ³
		ii	(ii) correct substitution into F =mv ² /r: eg F =	C1	
			$(9.7 \times 10^{3} \times 0.26^{2})/60$	A1	Allow 11 N
			F = 10.9 N		
	b	i	THREE correct arrows at A, B and C all pointing towards	B1	Ignore starting point of arrow
			the centre (judged by eye)		
		ii	Greatest reaction force is at C	M1	This is a mandatory M mark. The second mark cannot be
			because it supports weight of sock AND provides the	A1	gained unless this is scored.
			required upward resultant (centripetal) force (WTTE)		Any indication that candidates think that the centripetal force is
					a third force loses this second and possibly the next mark.
			Least at A because sock's weight provides part of the	B1	They must make correct reference to the resultant force that
			required downward resultant (centripetal) force (WTTE)		provides the required centripetal force/acceleration.
					Allow answers using the equation F =mv ² /r
					such as N _c - mg (at C) = centripetal force OR mv ² /r
					OR mg +N _A (at A) = centripetal force OR mv ² /r
			Total	7	

Qu	Question		Expected Answers	Marks	Additional guidance
3	а		arrows (at least one) indicating direction is towards the planet. All lines looking as though they would meet at the centre judged by eye	B1 B1	At least 4 drawn and care taken Some of the lines must be outside the planet.
	b	i	(mg = GMm/r ² and hence) M = gr ² /G correct substitution M = $24.9 \times (7.14 \times 10^7)^2 / 6.67 \times 10^{-11}$ = 1.9×10^{27} Kg (i.e about 2×10^{27})	C1 M1 A1	Equation needs to be rearranged as shown for C1 mark
		ii	correct substitution into $V=(4/3)\pi r^3 = (4/3)\pi (7.14\times 10^7)^3 \{= 1.52\times 10^{24} \text{ m}^3\}$ density = mass/volume = 1.9 x10 ²⁷ /1.52 x 10 ²⁴ = 1250 kg m ⁻³	C1 A1	If m= 2 x 10 ²⁷ kg is used d = 1312 scores 2 marks
			Total	7	

Qı	Question		Expected Answers	Marks	Additional guidance
4	a	on .	The resultant force is zero (WTTE) Forces are weight and force from the spring (allow tension)	B1	For the first mark allow - sum of forces is zero, - upward force = downward force, - forces cancel each other BUT do not allow forces are balanced Allow force of gravity for weight
	b	i	acceleration is (directly) proportional to displacement and is directed in the opposite direction to the displacement. (WTTE)	M1 A1	allow a=-(2πf) ² x, provided a and x are identified and –ve sign must be explained. Do not allow "acceleration is prop to negative displacement for second mark. Allow always towards the equilibrium position
		ii	$x = a\cos 2\pi ft \Rightarrow 2\pi f = 7.85 \text{ (expressed in any form)}$ $f = (7.85/2\pi) = 1.25 \text{ (1.249Hz)}$	M1 A1	Do not allow use of Fig 4.2 to show T= 0.8s and hence f=1.25 Hz. This scores 0.
		iii	correct subst ⁿ in $V_{max} = (2\pi t)A \Rightarrow V_{max} = 2\pi x 1.25 \times 0.012$ $V_{max} = 0.094 \text{ ms}^{-1}$	C1 A1	Many will forget to change 12 mm into 0.012m and have v = 94 ms ⁻¹ this scores 1 mark.
	С		roughly sinusoidal graph of <u>correct period</u> ie 0.8s <u>90° out of phase</u> with displacement graph (i.e. starts at origin with -ve initial gradient) <u>maximum velocity</u> correctly shown as 0.094 (allow ecf from (iii))	B1 B1	
			Total	11	

Qu	Question		Expected Answers	Marks		
5	а	i	correct substitution in E = mc∆θ: eg E = 0.08x4180x40 ratio = 0.08x4180x40/5 x 10 ⁻⁵ x2460x40 = 2.7(2) X 10 ³	C1 A1	Allow 80x4180/0.05x2460 (13376/4.92) for this C1 mark. 1: 2700 does not score the second mark.	
		ii	Any valid advantage: eg car cooling systems because it absorbs large amounts of heat for a small rise in temp OR ideal fluid for central heating systems because it releases large amounts of heat for a small drop in temp. OR helps to maintain constant body temperature since body is mainly water which absorbs lots of heat for small temp rise	B1 B1	First mark for valid situation Second mark for correct explanation of why the high value of the shc is helpful.	
	b		labelled diagram (2 marks): liquid in vessel with <u>electrical</u> heater (submerged) and thermometer ammeter connected in series between supply and heater AND voltmeter connected across heater.	B1 B1	Allow use of joule meter if convincingly connected to heater and power supply i.e. 2 wires from power supply two wires to heater	
			list of measurements (3 marks): mass of liquid, initial and final temperature/change of temp (of the liquid) I, V and t values OR energy meter readings OR power and time	B1 B1 B1	Allow such things as "find mass", "known mass", "10K temp rise", "time for 2 minutes" "known power", etc.	
			explanation (1 mark): $E = mc\Delta\theta$ rearranged to $c = E/m\Delta\theta$	B1		
			uncertainties (2 marks) each stated with explanation of remedy: e.g. - heat losses (makes E or Δθ uncertain) (solved by) insulating beaker/use lid - false temp reading (solved by) stir the liquid - temp continues to rise after heater switched off measure highest value - thermal capacity of vessel (solved by) take this into account in calculation	B1 B1 max 2	Allow ItV/mΔθ. Do not allow "repeat the experiment". Give credit for valid suggestions if mentioned anywhere in the description of the experiment.	

Que	Question		Expected Answers	Marks	Additional guidance
6	а		(n) number of moles	B1	
			(T) absolute temperature OR thermodynamic temp OR temp measured in	B1	Accept K for Kelvin
			Kelvin		
	b	i	(When gas is heated) molecules gain KE/move faster	B1	If no reference to rate of collisions, max
			this would cause more collisions/sec (with the walls)	B1	of 3 marks
			collisions exert more force/greater change in momentum per collision	B1	
			For constant pressure fewer collisions/sec are required	B1	
			Constant pressure is achieved by the increase in volume OR with a bigger	B1	This must be explained fully but can be
			volume there are fewer collisions/sec	max 4	done with reference to P = $(1/3)\rho < c^2 >$
		ii	correct substitution in pV/T = constant: OR V/T = constant		
			e.g. 1.2x10 ⁻⁴ /293 = V/363	C1	Both temps must be in Kelvin.
			V= (363/293)x1.2x10 ⁻⁴ = 1.49 x10⁻⁴ m ³ .	A1	Allow 1.5 x 10 ⁻⁴ m ³
	С		Use of 1/2m <c<sup>2> = 3/2 kT</c<sup>	C1	If 90° C is used √ <c2> = 282 ms1 and</c2>
			Correct substitution: $\sqrt{\langle c^2 \rangle} = \sqrt{(3kT/m)} = \sqrt{(3x1.38 \times 10^{-23}x363/4.7x10^{-26})}$	C1	scores 2 marks
			$\sqrt{\langle c^2 \rangle} = 565 \text{ ms}^{-1}$	A1	Allow 570 ms ⁻¹
			1-0- 300 1110		If they do not square root, they get
					319225 ms 1 and score 2 marks
			Total	11	