Exercise A

1	0K is the lowest temperature as at this temperature the internal energy of a substance is at its minimu- value. The kinetic energy of all the atoms or molecular is zero, then have stemped moving	um	
2	molecules is zero - they have stopped moving. Increases the internal energy of the substance as the electrostatic potential increases when a substance changes phase (from solid to liquid, or	[1]	
	from liquid to gas).	[1]	
3	Increase the temperature of the substance.	[1]	
	Change the phase of the substance from solid to liquid, or from liquid to gas.	[1]	
4	The average kinetic energy of the atoms or molec in 1.0 kg of water at 0°C is the same as the average kinetic energy of the atoms or molecules in 1.0 kg ice at 0°C.	ge	
	However, the atoms or molecules in 1.0 kg of war have a higher electrostatic potential energy.	ter [1]	
	As the internal energy is the sum of the kinetic a potential energies of the atoms or molecules with the substance. The water has a higher internal er	nin	
5	When the water vapour condenses there is a dec		
10	in the electrostatic potential energy of the particles in		
	the water.	[1]	
	This energy is transferred from the water to the		
	window.	[1]	

Exercise B

1	а	Use of $E = mc\Delta\theta$	[1]
		Water: $E = 1.0 \times 4200 \times 20 = 84000 \text{ J}$	[1]
	b	Aluminium: $E = 0.600 \times 904 \times 20 = 10800 \text{ J}$	[1]
	¢	Lead: $E = 4.2 \times 10^{-6} \times 129 \times 20 = 10.8 \text{mJ}$	[1]
2	Aj	opropriate diagram	[2]
	M	easurements: Current	[1]
	Po	stential difference	[1]
	In	itial temperature	[1]
	Fi	nal temperature	[1]
	Ti	me	[1]

3 Change in GPE is converted into thermal energy. [1] Loss in GPE = $mg\Delta h = 1.0 \times 9.81 \times 450 = 4400$ [1] $E = mc\Delta \theta$ Therefore $\Delta \theta = \frac{E}{mc} = \frac{4400}{1.0 \times 4200} = 1.0$ °C [1] 4 $c = \frac{IVt}{I}$

$$\begin{array}{l} \mathbf{4} \quad c = \frac{IVT}{m\Delta\theta} \\ c = \frac{2.0 \times 12 \times (5.0 \times 60)}{0.500 \times 32} \end{array}$$
[1]

$$c = 450 \,\mathrm{J\,kg^{-1}\,K^{-1}}$$
 this corresponds to iron in Table 1 [1]

5 From $E = mc\Delta\theta$: $P = mc\frac{\Delta\theta}{\Delta t}$ [1]

From the graph
$$\frac{1}{\Delta t}$$
 = gradient [1]
Gradient = 0.75 °C s⁻¹ ± 0.04 °C s⁻¹ [1]

$$P = mc \frac{\Delta \theta}{\Delta t} = mc \text{ gradient and therefore}$$

$$c = \frac{P}{m \times \text{ gradient}} \qquad [1]$$

$$c = \frac{60}{0.030 \times 0.75} = 270 \text{ Jkg}^{-1} \text{ K}^{-1} + /-200 \text{ Jkg}^{-1} \text{ K}^{-1} \quad [1]$$

$$c = \frac{60}{0.030 \times 0.75} = 270 \text{ Jkg}^{-1} \text{ K}^{-1} + /-200 \text{ Jkg}^{-1} \text{ K}^{-1} \text{ [1]}$$

Drop in kinetic energy of car

$$= \frac{1}{2}mv^2 = \frac{1}{2} \times 1500 \times 20^2 = 300 \text{ kJ}$$
 [1]
As there are two discs the energy dissipated by

each disc = 150 kJ

$$E = mc\Delta\theta$$
 therefore $\Delta\theta = \frac{E}{mc} = \frac{150000}{8.0 \times 500} = 38 \,^{\circ}\text{C}$ [1]

Exercise C

6

1	$E = mL_r$	[1]
	$E = 2.5 \times 88000 = 220 \mathrm{kJ}$	[1]
2	There is a greater change in internal energy chang phase from liquid to gas than from solid to liquid.	
3	$E = mL_r$	[1]
	$E = 0.050 \times 398000 = 20 \text{kJ}$	[1]
4	Energy transferred to the water = $Pt = 24 \times (60 \times 2)$	20)
	= 28800 J	[1]
	$E = mL_v, m = \frac{E}{L_v}$	[1]
	$m = \frac{28800}{2.26 \times 10^6} = 0.013 \mathrm{kg}$	[1]
5	$\mathbf{a} \frac{E}{\Delta t} = mc \frac{\Delta \theta}{\Delta t}$	[1]
	$\frac{E}{\Delta t} = 0.060 \times 904 \times \frac{640}{16}$	[1]
	$\frac{E}{\Delta t} = 2200 \text{ W}$	[1]
	$\mathbf{b} = E = mL_f$	[1]
	$E = 0.060 \times 398000 = 24000 \text{ J}$	[1]

Kinetic energy of bullet = $\frac{1}{2}mv^2 = \frac{1}{2} \times 0.008 \times 400^2$ 6 = 640 J[1] Energy required to heat the bullet to its melting point (327°C): $E = mc\Delta\theta = 0.008 \times 129 \times (327 - 20) = 296 \text{ J}$ [1] Energy required to melt the lead = $E = mL_i$ $= 0.008 \times 23000 = 184 \text{ J}$ [1] Energy remaining = 640 - (296 + 184) = 160 J [1] $E = mc\Delta\theta$ Therefore $\Delta\theta = \frac{E}{mc} = \frac{160}{0.008 \times 129} = 160 \,^{\circ}\text{C}$ [1] Therefore final temperature of lead = 160 + 327 = 490°C [1]

Exercise D

1	$N = n \times N_A = 3.0 \times 6.02 \times 10^{23}$	[1]
	$N = 1.8 \times 10^{14}$ atoms or molecules	[1]
2	The number of atoms in 1 mol of silicon is the same	
	as the number of atoms in 1 mol of aluminium.	[1]
	However, the atoms have a different mass (silicon	1.1
	atoms have a greater mass than aluminium atoms).	[1]
3	Initial momentum = mu and final momentum = -mu	[1]
	Therefore change in momentum, $\Delta p = 2 mu$	[1]
4	a $N = n \times N_{A}$ therefore $n = \frac{N}{N_{A}}$	
	$n = \frac{N}{N_{\star}} = \frac{2.0 \times 10^{24}}{6.02 \times 10^{23}} = 3.3 \mathrm{mol}$	[1]
	b $n = \frac{N}{N_{\rm A}} = \frac{1.5 \times 10^{17}}{6.02 \times 10^{23}} = 2.5 \times 10^{-7} \mathrm{mol}$	[1]
	c $n = \frac{N}{N_A} = \frac{2.0 \times 10^{24}}{6.02 \times 10^{23}} = 3.3 \mathrm{mol}$	[1]
5	a $m = n \times M = \frac{N}{N_A} \times M$ therefore $N = \frac{m \times N_A}{M}$	[1]
	$=\frac{1.0\times6.02\times10^{23}}{64\times10^{-3}}=9.4\times10^{24}$	[1]
	b $m = n \times M = \frac{N}{N_A} \times M$	
	Find <i>m</i> when $N = 1$	[1]
	$M = \frac{1}{6.02 \times 10^{23}} \times 235 \times 10^{-3} = 3.9 \times 10^{-25} \text{ kg}$	
6	Mass of lead, density = $\frac{\text{mass}}{\text{volume}}$ therefore	
	mass = density × volume	[1]
	$mass = 11340 \times 0.20 = 2300 kg$	[1]
	Number of atoms = $\frac{2300}{3.46 \times 10^{-25}} = 6.6 \times 10^{27}$ atoms	[1]
	$n = \frac{N}{N_A} = \frac{6.6 \times 10^{27}}{6.02 \times 10^{21}} = 11 \times 10^3 \text{ mol}$	[1]

Exercise E

	PT	
1	$pV = nRT$ therefore $p = \frac{nRT}{V}$	[1]
	$p = \frac{60 \times 8.31 \times 250}{60000} = 2.1 \mathrm{Pa}$	[1]
2	a $p \propto \frac{1}{V}$ therefore if V is doubled, p halves.	[1]
	b $p \propto \frac{1}{V}$ therefore if <i>V</i> reduces by a factor of 3,	
	p increases by a factor of 3.	[1]
3	$\frac{p}{T} = \text{constant}$	[1]
	Initially: $\frac{300000}{293} = 1020 \text{ Pa K}^{-1}$ $p = \text{constant} \times T$	[1]
	After the change $p = 1020 \times 393 = 401000 \text{ Pa}$	[1]
	Therefore the change = 1 01 000 Pa	[1]
4	Graph of <i>p</i> against $\frac{1}{V}$ with axis labelled (including	
	Points plotted correctly	[1]
	Line of best fit drawn	
	Determination of gradient = $48000 + / - 2000$	[1]
	Gradient = nRT therefore $n = \frac{\text{gradient}}{PT}$	[1]
	$n = \frac{48000}{8.31 \times 293} = 20 \mathrm{mol}$	[1]
5	$pV = nRT$ therefore $V = \frac{nRT}{p}$	[1]
	$V = \frac{1 \times 8.31 \times 273}{100000}$	[1]
	$V = 0.023 m^3$	111
6	$pV = nRT$ therefore $n = \frac{pV}{RT}$	[1]
	$n = \frac{50000 \times 0.25}{8.31 \times 288}$	[1]
	n = 5.2 mol	
	$N = n \times N_{\rm A} = 5.2 \times 6.02 \times 10^{23}$	[1]
	= 3.1×10^{24} particles (atoms or molecules)	[1]
7	$pV = nRT$ therefore $n = \frac{RT}{pV}$	[1]
	Temperature of air inside the lungs - 300 K	
	Volume of the lungs – $5800 \text{ ml} \rightarrow 0.0058 \text{ m}^3$	[1]
	Pressure in the lungs – atmospheric pressure = 100000 Pa	
	$n = \frac{8.31 \times 300}{100000 \times 0.0058} $ [1] – mark awarded for usi your estimates	ng
	$n = 4.3 \mathrm{mol}$	[1]

Exercise F

1	Mean speed = $\frac{100 + 200 + 150 + 50}{4} = 125 \text{ ms}^{-1}$	[1]
	Mean square speed = $\frac{100^2 + 200^2 + 150^2 + 50^2}{4}$.	
	Mean square speed =4	
	$= 19000 \mathrm{m}^2 \mathrm{s}^{-2}$	[1]
	Root mean square speed = $\sqrt{19000}$ = 140 m s ⁻¹	[1]
2	Particles gain kinetic energy as the temperature	
	increases	[1]
	Therefore the speeds of the particles increases	[1]
	$\frac{1}{2}Nmc^2$	
3	$pV = \frac{1}{3}Nmc^2$ therefore $V = \frac{\frac{1}{3}Nmc^2}{p}$	[1]
	$V = \frac{\frac{1}{3} \times 4.0 \times 10^{25} \times 4.7 \times 10^{-26} \times 450^{2}}{800000}$	
	V =	[1]
	$V = 0.16 \mathrm{m}^3$	[1]
	$\frac{1}{2}Nmc^{2}$	
4	$pV = \frac{1}{3} Nmc^2$ therefore $p = \frac{\frac{1}{3} Nmc^2}{V}$	[1]
	, · · · · · · · · · · · · · · · · · · ·	
	$p = \frac{\frac{1}{3} \times 4.0 \times 10^{25} \times 4.7 \times 10^{-26} \times 600^2}{0.16}$	
	p =	[1]
	p = 1.4 MPa	[1]
5	a $N = n \times N_A = 2.0 \times 6.02 \times 10^{23}$	
	$= 1.2 \times 10^{24}$ molecules	[1]
	b mass of molecule = $\frac{M}{N} = \frac{0.032}{1.2 \times 10^{24}}$	
	$= 2.7 \times 10^{-2n} \text{ kg}$	[1]
	c $pV = \frac{1}{3}Nmc^{2}$ therefore $\overline{c^{2}} = \frac{pV}{\frac{1}{3}Nm}$	[1]
	$\frac{1}{2}Nm$	1.1
	- 140000 × 0.020	
	$\overline{c^2} = \frac{140000 \times 0.020}{\frac{1}{3} \times 1.2 \times 10^{24} \times 2.7 \times 10^{-26}}$	[1]
	$\frac{1}{3} \times 1.2 \times 10^{44} \times 2.7 \times 10^{-50}$	
	$\overline{c^2} = 260000 \text{ m}^2 \text{ s}^{-2}$	
		[1]
	$c_{ems} = \sqrt{260000} = 510 \text{ m s}^{-1}$	[1]