IDEAL GASES
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Learning outcomes

Demonstrate knowledge,
understanding, and application of:

-> amount of substance,
measured in moles

=> the Avogadro constantN,

= the model of the kinetic
theory of gases and its
assumptions

=> pressure in terms of
this model.
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You have met the kilogram along
with the other Sl base units in
Topic 2.1, Quantities and units.

A Figure 1 An Avogadro Project
sphere (in the centre of this measuring
machine] is made of pure silicon and

is the most spherical object ever made
by humans — it is so perfectly spherical
that if it were scaled up to the size of
Earth, with a radius of 6370 km, its
highest point would only be around 2m
above its lowest point

The kinetic theory of gases

Specification reference: 5.1.4

Moving beyond the last artefact

The kilogram remains the only SI unit defined by means of an

artefact — the international p‘rototype kilogram, kept in a’vault

near Paris. Several alternative options for a universal definition are .
currently being explored. One of these, which is gaining favour
amongst the scientific community, is led by the International Avogadro
Project and aims to relate the kilogram to the mass of a particular A
atom (Figure 1). Using painstakingly manufactured silicon spheres, the
project’s workers hope to define the kilogram as the mass of a precise
number of silicon atoms. This approach is already used to define
another SI unit, the mole.

Particles and the mole

In order to understand how gases behave, not only must we study
macroscopic (large-scale) properties like mass and temperature, but
we must also understand what is going on at the particle level.

We can express the number of atoms or molecules in a given

volume of gas using moles (mol), the SI unit of measurement for the
amount of substance. This is a base quantity and is different from -
the mass of a substance. The amount of a substance indicates the
number of elementary entities (normally atoms or molecules)

within a given sample of substance.

One mole is defined as the amount of substance that contains as many °
elementary entities as there are atoms in 0.012 kg (12 g) of carbon-12.
This number is called the Avogadro constant, N,, and has been
measured as 6.02 x 10%3. :

By definition, 1 mol of any substance contains 6.02 x 1023 individual
atoms or molecules. Therefore the total number of atoms or molecules
in a substance, N, is given by the equation

N=nxN,

where 7 is the number of moles of the substance. -

aMolar mass

The molar mass, M, of a substance is the mass of one mole of the
substance. Knowing the molar mass allows us to calculate the mass m of a
sample of a substance if we know the number of moles, n, and vice.versa:

m=nxM
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IDEAL GASES
The molar mass of an element is simple to determine from the nucleon m

" number (also called the mass number). Helium-4 has a nucleon number Mass represents the amount of
of 4. As a result the molar mass of helium-4 is 0.004 kg mol~* (4 g mol™1). matter in an object, measured
Similarly, one mole of uranium-238 would have a mass of 0.238 kg (238 g]. in kg, whereas the amount

of substance, measured in
mol, indicates the number of
elementary entities, such as
atoms, ions, molecules, electrons,
or other particles.

o

It becomes a little more complex when dealing with molecules. Nitrogen
forms N2 molecules, that is, each molecule contains two nitrogen atoms, each
with a molar mass of 0.014 kg mol™*. The nucleon number of nitrogen is 14.
Therefore the molar mass of nitrogen gas is 0.028 kg mol~*.

A molecule of carbon dioxide (CO,) contains one carbon atom (nucleon
number 12) and two oxygen atoms (nucleon number 16). Therefore the
molar mass of carbon dioxide is 0.044 kg mol~! (= 0.012 + 0.016 + 0.016).

Table 1 gives the molar masses of these and some other common gases.

W Table 1 Molar masses of some common gases

Substance Elementary entities sl maﬁsls

/ kg mol
hydrogen gas H, molecules - 0.002
helium gas He atoms 0.004
oxygen gas 0, molecules 0.032
carbon dioxide gas CO, molecules ' 0.044
neongas Ne atoms 0.020
argon gas Ar atoms 0.040

1 Calculate the mass of 4.0 mol of helium gas.

-2 Calculate the molar mass of methane (CH,). The molar mass
of carbon is 0.012 kg mol~! and the molar mass of hydrogen is

- 0.001kg mol.

3 Calculate the number of molecules in 50 g of carbon dioxide.

~ : % i

The kinetic theory of gases

Studying how the atoms or molecules in a gas behave suggests

basic laws relating the motion of these particles at the microscopic

. scale to macroscopic properties like the temperature and pressure
of the gas. '

The kinetic theory of matter is a model used to describe the
behaviour of the atoms or molecules in an ideal gas. Real gases have
complex behaviour, so in order to keep the model simple a number of
assumptions are made about the atoms or molecules in an ideal gas.




15.1 The kinetic theory of gases
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A Figure 2 The change in momentum
of the atom is —2mu and not zero.
Momentum is a vector quantity

Summary questions

The assumptions made in the kinetic model for an ideal gas are as follows:

® The gas contains a very large number of atoms or molecules
moving in random directions with random speeds.

@ The atoms or molecules of the gas occupy a negligible volume
compared with the volume of the gas.

® The collisions of atoms or molecules with each other and the
container walls are perfectly elastic (no kinetic energy is lost).

@ The timeé of collisions between the atoms or molecules is negligible
compared to the time between the collisions.

® Electrostatic forces between atoms or molecules are negligible
except during collisions.

Using these assumptions and Newton’s laws of motion, we can explain
how the atoms or molecules in an ideal gas cause pressure.

The atoms or molecules in a gas are always moving, and when they
collide with the walls of a container the container exerts a force on
them, changing their momentum as they bounce off the wall.

When a single atom collides with the container wall elastically, its
speed does not change, but its velocity changes from +u#ms™! to -

. —ums~!. The total change in momentum is —2mu (see Figure 2).

The atom bounces between the container walls, making frequent
collisions. According to Newton'’s second law, the force acting on
the atomis F, = At, where Ap = —2mu and At is the time between

collisions with the wall. From Newton’s third law, the atom also exerts

an equal but opposite force on the wall.

A large number of atoms collide randomly with the walls of the
container. If the total force they exert on the wall is F, then the
pressure they exert on the wall is given by p = Where Ais the
cross-sectional area of the wall.

1 Calculate the number of elementary entitles (atoms or molecules) in 3.0 mol of a substance. ; (2 marks)

2 Suggest why one mole of silicon has a different mass from one mole of aluminium. (2 marks)

3 Amolecule of mass 5.3 x 1026 kg travelling at 500 m s~ collides with a container wall. !
It collides at right angles to the wall. Calculate the change in the momentum of this molecule. (2 marks)

4 Calculate the number of moles there are in a substance containing:

a 2.0 x 10%* molecules
b 1.5x 10% atoms
¢ 2.0 x 10 molecules.

(3marks) -

5 a The molar mass of copper is 64 g mol~* calculate the number of atoms in copper

of mass 1.0kg.

b The molar mass of uranium is 235 g mol~*. Calculate the mass of a single atom of uranium.

(2 marks)
(2 marks)

6 The dens;tg of lead is 11340 kgm~3. Each lead atom has a mass of 3.46 x 10-*kg.

Calculate the number of moles of lead in a lead block with a volume of 0.20m3. - s ~ (4marks)
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15.2 Gaslaws

Specification reference: 5.1.4

On therise

Weather balloons are launched into the upper atmosphere to
measures changes in temperature and pressure, and air currents and
atmospheric pollutants. As the balloon rises, the atmospheric pressure
around it drops, causing it to expand.

. The relationships between the temperature, pressure, and volume of

an ideal gas can be described by a few simple gas laws.

Pressure and Volume

If the temperature and mass of gas remain constant then the pressure
»of an ideal gas is inversely proportional to its volume V. This can be
expressed as :

p o< LV or pV = constant

I a fixed mass of gas is kept in a sealed box, halving the volume of

the box(slowly, to ensure the temperature remains constant) will
compress the gas and double the pressure it exerts on the box.

Investigating Boyle's law

The relationship between the pressure of gas and its volume at a constant
temperature was investigated by 1662 by Robert Boyle. He discovered the
relationship p o< v which is now called Boyle’s Law.

Boyle’s experimerits are simple to repeat in the classroom (Figure 2]. If the
pressure of a pressurised gas is slowly reduced, its volume increases. The
gas must be in a sealed tube to ensure the amount of gas inside the tube
remains fixed.
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pV = constant
pVi=pV2
A Figﬁre 3 Pressure—volume graphs for two gases at different temperatures —

the straight line through the origin in the second graph shows that p o< %

Each line on the graph relates to a gas at a specific temperature. In this case
Bis at a higher temperature than.A. The lines are called isotherms as they
represent how the pressure and volume are related at one fixed temperature.

Learning outcomes

Demonstrate knowledge,
understanding, and application of:

- the equation of state of an
ideal gas pV =nRT, where n is
the number of moles
techniques and procedures
used to investigate

pV = constant (Boyle’s law)
and % = constant

-> anestimation of absolute
zero using variation of gas
temperature with pressure.

¢
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A Figure 1 Weather balloons expand
as they rise, eventually bursting and
parachuting back to Earth

volume

gas under

5 [ pressure  pressure gauge
10 measuring
ég : pressure in

pascals

to footpump

A Figure 2 Apparatus for investigating
how changing the volume of a gas affects
the pressure of the gas (Boyle's law]
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thermometer |
) 3

water bath

pressure
gauge

" A Figure 5 Apparatus used to
determine absolute zero through
investigating how the temperature of a

gas affects its pressure
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-273°C

0 6/°C

A Figure 6 Agraph of pressure of gas

against its temperature

The graph in Figure 4 was produced in an investigation into Boyle’s law.
5 sane

V/im3

A Figure 4 Agraph showing pressure against volume for a certain gas

1 Explain why the pressure must be changed slowly.
2 Use the graph in Figure 4 to show that pV = constant.

Pressure and temperature

If the volume and mass of gas remain constant, the pressure:p of an
ideal gas is directly proportional to its absolute (thermodynamic)

" temperature T in kelvin. This relationship canbe expressed as,

poT or % = constant

For a fixed mass of gas in a sealed container, doubling the temperature
(say from 100K to 200K) will double the pressure the gas exerts on
the container walls. ’ :

. k.
@ Estimating absolute zero : -

" Because the expression above requires the absolute temperature T, an
investigation into the relationship between the pressure of a fixed volume
and mass of gas and its temperature can provide an approximate value for
absolute zero. :

With the set-up shown in Figure 5, the temperature of the water bath can be
increased and the resulting increase in pressure of the gas inside the sealed
vessel recorded.

At absolute zero the particles are not moving (the internal energy is at its

minimum) so the pressure of the gas must be zero. Plotting a graph of pressure
against temperature @in Celsius from the experimental results gives a line that
can be extrapolated back to a point where the pressure is zero (Figure 6). ‘

1 Explain why the volume of the gas must remain fixed.
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‘ 2 Thedatain Table 1 was collected in an investigation into the pressure
of a fixed mass and volume of gas as temperature changed.

a Plot a graph of pressure p of the gas against temperature 8in °C
(range of B: -300°C to 100°C). Use your graph to determine a
value.fc')r absolute zero.

b On your graph, sketch a second line to show the pattern you
would expect if the experiment were repeated using the same

~mass of gas at a larger volume.

Combining the gas laws

By combing the two previously described ‘gas laws we can show that

for an ideal gas

G g . % = constant

- i the conditions are changing from an initial state to a final state this
«an be written as

n - I Pinitial meal pfmal final

Tﬁnal

g VvV
or simply =

Tmmal

A weather balloon with a volume of 2.0m? is launched on a day
~ when the atmospheric pressure is 101 kPa and the temperature
is 20°C at ground level. It rises to a level where the air pressure
t 15 20% of the pressure on the ground and the air temperature is
k-1 5°C. Calculate the volume of the balloon at this altitude.

Step 1: First convert the temperatures into kelvin.
208C€ =293 Kand —15°C = 258 K

- Step 2: S¢lect the equation you need and rearrange it to find the
final volume.

™ oy Y,
led 1 e a
A ‘ P T
ure Subsntutlng in known values in SI units gives
hat

1.01 x 10° x 2.0 x 258
2702 x1.01 x10° x 293

=88m3(25st)

The equation of state of an ideal gas

For one mole of an ideal gas, the constant in the combined
- relationship above is called the molar gas constant, R, and is equal to
8.31JK 'mol-!. For n moles of gas the equation becomes
pV
=i

=nR or pV =nRT

15

WV Table 1 Table showing the variation
of pressure with temperature for a fixed
mass of gas at a constant volume

6/°C p/10°Pa
10 1.41
20 1.45
30 1.51
40 1.57
50 1.61
60 1.66
70 1.70

Remember, temperatures must be

stated in kelvin when using ideal

gas equations.




15 - 15.2 Gaslaws

This relationship is called the equation of state of an ideal gas. The
molar gas constant is the same for all gases, as long as we can treat
them as being ideal, so the equatjon above can be applied to trapped
air in the laboratory or to helium in the atmosphere of distant stars.

Worked example: A pressurised container

A 3.50m?> pressurised- container contains 425 moles of gas at
25.0°C. Calculate the pressure of the gas inside the container.

 Step 1: Convert the temf)erature into kelvin.
25.0°C = 298K ' o

Step 2: Select the equation you need and rearrange it to make
the pressure the subject.
nRT
pV = nRT, hence = o
Substitute in known values and calculating the pressure
of the gas inside the container.

» _ 425 x 8.31 x 298
gradient = nR B 3.50

pV

=3.00 x 10°Pa (3 s.f.)

. O/ T/K . :
Graphical analysis ,
A graph of pV against T for a fixed amount of gas produces a straight

line through the origin (pV e T). By considering the general equation

A Figure 7 Agraph of pVagainst T
for a fixed amount of gas produces a
straight line through the origin. Gas B

produces a steeper line than gas A, as of a straight line, y = mx + ¢, and the equation state of an ideal gas,
gas B contains a greater number of pV =nRT, we can see the gradient of the graph is equal to nR. The
moles than A. ) greater the number of moles of gas, the steeper the line becomes.

1 Asealed container contains 60 moles of gas at temperature of 250K and a pressure of 60 000 Pa.
Calculate the volume of the container. (2 marks)

2 State the effect on the pressure of a fixed mass of gas at constant temperature if the volume of gas is:
a doubled; ;
b reduced to a third of its original value. (2 marks)

3 Afixed mass and.volume of gas initially at a temperature of 20°C and pressure of 300 kPa is
" heated to 100°C. Calculate the change in pressure. (4 marks)

4 Using the values from Figure 4, plot a graph of p against % :
Use this graph to determine the number of moles of gas used in the experiment. The temperature of
the gas during the experiment was a constant 20 °C. " (4 marks)

&

5 Standard conditions for temperature and pressure (STP) are 0°C and 100 kPa. Calculate the - il
volume occupied by 1 mol of air at STP. : Bl (3 marks)

6 Calculate the number of particles in a gas sample if, when the sample is in a sealed container . b
of volume 0.25 m? at a temperature of 15°C, the pressure inside the container is 50 kPa. ' (4 marks)

Use the equation of state of an ideal gas to estimate the amount of airin your lungs. -~ (4marks)

28




Bl (5.3 Root mean square speed
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s Specification reference: 5.1.4
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-~ What happens when average velocity =0ms™*? F e
We have already seen how the particles (atoms or molecules) in a gas SAIDE SuioaRwe
move in random directions at different speeds. If we calculated the : Demonstr oo k"°W'edgeg _
average velocity of the particles in a gas, because velocity is a vector : understanding, and appllcaggn of:
~ the average would be 0ms~!. All the velocities of such a large number : = theequation pV=1Nmc?
- of particles would simply cancel out. So in order to describe the typical 3 relating the number of
- “motion of particles inside the gas, we use a different measure, the root ~ : particles and the mean
!' mean square speed (r.m.s. speed). : square speecl
: k : : = rootmean square speed and
; £m.s. speed . mean square speed.
- In order to determine the r.m.s. speed, the velocity, ¢, of each atom tertisiresessersrevesssssscssasesurasannibl
~ wr molecule in the gas is squared, ¢>. Then the average of this squared
re ~ welocity is found for all the gas particles, giving ¢? — the bar is a symbol
%or ‘mean’. This is the mean square speed of the gas particles. Finally
~ the square root of this value is taken to give the r.m.s. speed, written
as Ve’ orc
| é Worked example: Average speeds
‘g.ht A very small sample of gas contains just four molecules moving
tion

‘in one line. Their velocities in ms~! are: 450, -50, 100,
400. Calculate the mean velocity, the mean speed ¢, and the
L.m.s. speed.

! 3 Step 1: For the mean velocity, you must take account of the signs
§ of the velocities, because they are vectors.
(—450 - 50 + 100 + 400)
; 4

ep 2: Speed is a scalar, so mean speed ¢ is calculated by
ignoring the negative signs.
= 50 + 100 + 4

RS t; D BO0TA.
s ep 3: To determine the r.m.s. speed, first square the speeds,
then determine the mean.

— Qs

mean Velocity =

mean square speed =
(202500 + 2500 + 100000 + 160000)
. 4

Coms, = (116250 =340ms™! (25.1).

.. The average speed ¢ is not the same as the r.m.s. speed.

=116250m2s; %

arks)

arks)




1 5 15.3 Root mean square speed

particles (atoms or
molecules)

molecules] in a container

container

A Figure 1 Gas particles (atoms or

Pressure at the microscopic level

The reason for our interest in r.m.s. speed is that it appears in the
equation for the pressure and volume of a gas,

pV=LNme
3
where p is the pressure exerted by the gas, V'is the volume of the gas,

N is the number of particles in the gas, m is the mass of each particle
and ¢? is the mean square speed of the particles.

oy A
c Derivation ofpV=%ch2 o

B 1 " 5 . 5
The equation pV=§ch2 can be derived by considering how the movement
of atoms or molecules of gas inside a sealed box gives rise to pressure.

Consider a single gas particle (atom or molecule] making repeated collisions
with a container wall. The container is a cube with sides L. The gas particle
has mass m and velocity c. It hits the surface of the wall at right angles.

The elastic collision results in a change in momentum of magnitude 2mc
(see Topic 15.1, The kinetic theory of gases). The time t between collisions
is the total distance covered by the particle divided by its speed. Therefore
t= % According to Newton’s second and third laws, the force exerted by the

particle on the wall is:

Dp

force=——= 2mc Rdett ;.
At TR

If there are N particles in the container moving randomly, the average force

2

o2
exerted by each particle must be . T where c?is the mean square speed
of the particles.

On average, because of the random motion of the gas particles, about % of
the particles will be moving between two opposite faces of the container.
Consequently the total force on one container wall of cross-sectional area L=
due to collisions from all of the particles must be

2

mc 1 ch
force= — X N X el

L 3 3L ;
Finally, the pressure p exerted by the gas must equal to the total force exerted
by all the particles divided by the cross-sectional area of the wall. Therefore

Nmc? B 1 Nmc® Nmc?

T e R

P:

where Vis the volume of the container. Therefore pV = %ch?

1 Explain why, when considering the large number of particles in
sample of gas, it is a fair assumption that there must be. about =«
the particles moving between two opposite faces of the contamer

2 State the other ideal gas assumptions required for this derivation.
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- Distribution of particle speeds at different temperatdres

" The r.m.s. speed provides a useful way to describe the'motion of the

- particles in a gas, but it is important to remember that it is an average.
At any temperature, the random motion of the particles means that
some are travelling very fast, whilst others are barely moving. The
range of speeds of the particles in a gas at a given temperature is known
as the Maxwell-Boltzmann distribution, shown in Figure 2.
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0 / / \ ) speed of particle

most mean root-mean-
probable speed square speed
speed

A Figure 2 The spread of speeds of particles in a gas is called the Maxwell-Boltzmann
@stribution, and is broader at the high temperature T, than at the low temperature T,

~ Lhanging the temperature of the gas changes the distribution. The
~ hotter the gas becomes, the greater the range of speeds. The most
wommon (modal) speed and the r.m.s. speed increase, and the
@stribution becomes more spread out.

Summary questions

Calculate the mean spéed ¢, mean squared speed c?,and rms. speedc, . of asmall group of
atoms with the following velocities: +100ms™,-200ms™, +150 ms™%, -50 ms™*. (3 marks)

Describe how the speeds of the particles in a gas change as the temperature of the gas increases. (2 marks)

A gas cylinder contains nitrogen at a pressure of 800 kPa. The cylinder contains 4.0 x 10%° molecules
~and each molecule has a mass of 4.7 x 1072 kg. The r.m.s. speed of the molecules is 450ms™1.
- Calculate the volume of the cylinder. S0 (3 marks)

Calculate the pressure inside the cylinder in question 3 if the r.m.s. speed of the molecules inside
~ the cylinder increases to 600 ms™*. : ; : - (3 marks)

| f oxygen has a mass of 0.032 kg. An oxygen cylinder has a volume of 0.020m? at a
re of 140 kPa. It contains 2.0 moles of oxygen. Calculate:
imber of molecules inside the cylinder »
the mass of each molecule .
the r.m.s. speed of the oxygen molecules in the cylinder. , (6 marks)




15.4 The Boltzmann constant

Specification reference: 5.1.4
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Learning outcomes

Demonstrate knowledge,
understanding, and application of:

=> the Boltzmann constant, k = Ni
> pV=NKkT,2mc?=2kT
=> internal energy of an ideal gas.
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Where is all the helium?

Helium is the second most abundant element in the universe. It makes
up about 24% of the known mass of the universe, yet on-Earth it is
exceptionally rare, making up just 0. 0005% of our atmosphere. Where
has it all gone? '

At the temperatures experieﬁced on Earth, and especially the high
temperatures soon after Earth’s formation, individual helium atoms -,
can reach high enough speeds to escape the Earth’s gravitational pull
and fly into space. Luckily for life on Earth, nitrogen and oxygen
molecules are not so fast. This topic explains how the average kinetic
energy of the particles in a gas is related to its absolute temperature.

A Figure 1 Our atmosphere is approximately 78% nitrogen (N}, 21% oxygen (0,), and
1 % argon (Ar), with other gases making up significantly less than 1% (carbon dioxide, CUZ,
is the next highest, making up 0.04% at current levels]

The Boltzmann constant

Ludwig Boltzmann was an Austrian physicist, whose greatest
achievement was arguably his work on statistical mechanics. He
applied Newtonian mechanics to gas particles in order to model the -
behaviour of gases. He was able to explain how the microscopic
properties of particles in substances relate to the macroscopic
properties of the gas, including temperature and pressure.

The Boltzmann constant, k, is named is in his honour. As you will

see later, it is used to relate the mean kinetic energy of the atoms or
molecules in gas to the gas temperature. The Boltzmann constant is
equal to the molar gas constant R divided by the Avogadro constant N i

k= . 1.38 x. 10723 JK"!
N

A




IDEAL GASES

second equation of state of an ideal gas

We can use the Boltzmann constant to express the equation of state of
an ideal gas in another way. You can substitute the definition of k into
the ideal gas equation pV = nRT to give pV = nkN,T

You have me the equation N =n x N,
in Topic 15.1, The kinetic theory of
gases.

The number of particles in the gas sample, N, is equal to 7 x N,.

1kes .
‘S Therefore pV = NKT.

5

1ere

% Worked example: Moles in the classroom

A large school classroom has a volume of 600m?. On a typical
‘day the atmospheric pressure in the classroom is 101 kPa and the
temperature is 20°C. Calculate the number of particles of gas and
‘the number of moles of gas inside the classroom.

ep 1: Select the appropriate equation and rearrange for N.

DV = NkT or N=p—V

kT
1.01 x 10° x 600
E = 1.49... x 10?8 particl
138 x 102 x 293 S
ep 2: Use N=n x N, to calculate the number of moles.
= w58 2.5 x 10*mol (2 s.f.)
NA

Mean kinetic energy and temperature m

combining pV = %ch_z and pV = NkT, we can derive an expression :
directly relates the mean kinetic energy of particles in a gas to All gas atoms and'mo!ecules have
absolute temperature of the gas. the same mean kinetic energy £,
ata given temperature, with -

%ch_2 = NKT

3
. : E = > kT
The number of particles N is a constant and can be cancelled.
- . or
L e ]
e =K1 E =202 102)7
d “The left-hand side of the equation can be rewritten as %m? = % X % x mc,
[:02’ hich gives
‘ 2 (1 = '
Zx (—mcz) = kT
i' 3 2

E
~ Rearranging gives 1,2 _ 3 1
- 2 2

N : 1.5 ; :
The expression ;mc2 is the mean average kinetic energy of the

i

F E T

~particles in the gas. Since all other values are constant,

)
I

~ This only applies if the temperature is measured in kelvin. Doubling
& 1he absolute temperature from 50K to 100K will double the average
Linetic energy of the particles (atoms or molecules) in the gas.




15.4 The Boltzmann constant

Worked example: The speed of a helium atom

A helium atom has a mass of 6.64 x 10727kg. Calculate the r.m.s.
speed of helium atoms in a gas at a temperature of 15.0°C.

Step 1: Convert the temperature into kelvin: 15.0°C = 288K

Step 2: Rearrange the felationship (%mc_z) = -3-kT to make ¢

2
the subject.
mc® = 3kT i
= BT
=—
m
3kT

Take the square root to give ¢, .=, /—
m

Finally, substitute in the values in SI units

- \/3x 1.38x10™ x 288
6.64x1077
The r.m.s speed of the helium atom is about 1.3kms!.

S A T mse (B )

r.am.s

Particle speeds at different temperatures

At a given temperature the atoms or molecules in different gases have

the same average kinetic energy. The oxygen molecules and helium
Cims - atoms around you, in spite of their different masses, have the same

S %—V mean kinetic energy. However, as the particles have different masses

Cr.m‘s

He ©

\ 4

increasing mass

their r.m.s. speeds will be different.

C #
CO, gﬂ; This explains why there is very little helium in the Earth’s a&tmosphere.
[ Helium atoms have a very small mass, which in turns means higher
r.m.s. speeds. According to the Maxwell-Boltzmann distribution, some
A Figure 2 The kinetic energy of the helium atoms have greater speeds than the r.m.s. speed. Over time, these
particles in different gases is the same faster-moving helium atoms have escaped from the Earth’s atmosphere.

atagiven temgerature, but rheir rm.s. The escape velocity for the Earth is about 11kms™.
speeds vary, with lighter particles

e T The internal energy of an ideal gas
The internal energy of a gas is the sum of the kinetic and potential
energies of the particles inside the gas. Oneof the assumptions of an
ideal gas (Topic 15.1) states that the electrostatic forces between particles
in the gas are negligible except during collisions. This means that there is
no electrical potential energy in an ideal gas. All the internal energy is in
the form of the kinetic energy of the particles. Doubling the temperature

~ of an ideal gas doubles the average kinetic energy of the particles inside
the gas and therefore also doubles its internal energy.
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! Summary questions

Describe what happens to the absolute temperature of a gas if the r.m.s.
speed of the particles in the gas:

a increases °

b doubles

¢ increases by a factor of 5. (5 marks)

: Show that the Bolztmann constant k has a value of
88 x 10-2JK L, (2 marks)

 Agas canister has a volume of 0.50 m?. The pressure inside the
canister is 450 kPa and the temperature is 18°C. Calculate the number

of particles of gas and the number of moles of gas inside the canister.
: : (4 marks)

‘Explain why doubling the temperature of a real gas does not double
e internal energy of the gas. (2 marks)

ow that the units of the Boltzmann constant are JK™1. (2 marks)

molecule (0,) has a mass of 5.3 x 1072 kg. Calculate the

of an oxygen molecule at room temperature (20°C).
: ' < (4 marks)

om of mass 6.6 x 10-%" kg with your answer to question 6.
e ' : (4 marks)

IDEAL GASES
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