а	(i)	mass of uranium is greater than (the sum of) the		
		mass of the products	M1	
		·		
		$E = \Delta mc^2$	A1	
		L - Allic	AI	
		op.		
		OR		
		binding energy of the products is greater than		
		that of uranium	M1	
		energy available is the difference between the		
		binding energies of uranium and the sum of the		
		products		
		products	A1	
+				
	(ii)	kinetic energy	B1	
b	(i)	the neutron is a single nucleon / cannot		The neutron is not bound to anything
		be split further / no binding has occurred	B1	
		·		
+	(ii)	binding energy of uranium = 235 x 7.6 =1786		An answer of 9.4 (not using the number of nucleons) scores
	(11)	billialing energy of diamidin = 200 x 7:0 = 1700		zero
		hinding operate of products		2610
		binding energy of products		
		$= 141 \times 8.3 + 92 \times 8.7$	C1	
		= 1170.3 + 800.4		
		energy available = 184.7 (MeV)	Λ4	Allow ≥ 2 sf (180, 185, 184.7)
		onorgy available = 101.1 (Mov)	A1	Penalise 184 as an AE
\perp				Penalise 104 as an AE

(a)		(Minimum) energy to separate (all) nucleons / protons and neutrons (of a nucleus)	M1 A1	Alternative: B.E. = mass <u>defect</u> × c ² M1 mass defect = mass of nucleons – mass of nucleus A1
(b)	(i)	BE of 2 H = $2 \times 1.8 \times 10^{-13}$ (J) or BE of 4 He = $4 \times 1.1 \times 10^{-12}$ (J) energy = $(4 \times 1.1 \times 10^{-12}) - 2 \times (2 \times 1.8 \times 10^{-13})$ energy = 3.68×10^{-12} (J) $/ 3.7 \times 10^{-12}$ (J)	C1 C1 A0	Note: Ignore signs
	(ii)1 (ii)2	total surface area = $4\pi \times (1.5 \times 10^{11})^2$ power = $1400 \times (2.83 \times 10^{23})$ power = 3.96×10^{26} (W) $/ 4.0 \times 10^{26}$ (W) number = $4.0 \times 10^{26}/3.7 \times 10^{-12}$ number = 1.1×10^{38} (s ⁻¹) or 1.08×10^{38} (s ⁻¹)	C1 C1 A0 C1 A1	Allow: 10 ³⁸ (s ⁻¹) because the question is about an estimate

(a)		Impossible to predict when a <u>nucleus</u> will decay or impossible to predict which <u>nucleus</u> will decay	B1	
(b)		$N = N_0 e^{-\lambda t}$ $(\lambda =) 0.693/7.1 \times 10^8$ $\lambda = 9.76 \times 10^{-10} \text{ y}^{-1}$ $0.011 = e^{-(9.76 \times 10^{-10} \times t)}$ $(age =) \frac{\ln(0.011)}{-9.76 \times 10^{-10}}$ $age = 4.6 \times 10^9 \text{ (y)}$	C1 C1	Alternatives: $N = N_0 e^{-\lambda t}$ $(\lambda =) 0.693/[7.1 \times 10^8 \times 3.16 \times 10^7]$ C1 $\lambda = 3.089 \times 10^{-17} \text{ s}^{-1}$ $0.011 = e^{-(3.089 \times 10^{-17} \times t)}$ C1 $(age =) \frac{\ln(0.011)}{-3.089 \times 10^{-17}}$ $age = 1.46 \times 10^{17} \text{ (s)}$ $age = 4.6 \times 10^9 \text{ (y)}$ A1 Or $0.011 = \frac{1}{2^n}$ C1 $n = -\frac{\ln(0.011)}{\ln 2}$ or $n = 6.5$ C1 $age = 6.5 \times 7.1 \times 10^8 \text{ (y)}$ $age = 4.6 \times 10^9 \text{ (y)}$ A1
(c)	(i)	number in the range 50 to 70	B1	
	(ii)	Correct reference to binding energy. Eg: The BE per nucleon will decrease for fusion (which is impossible unless external energy is supplied) (AW)	B1	

(iii)	(mass of nucleons =) 4 × 1.673 × 10 ⁻²⁷ + 4 × 1.675 × 10 ⁻²⁷	C1	Allow, due to misinterpretation of Data, Formulae an Relationship Booklet, the following (though incorrect)	
	$(\Delta m =) [4 \times 1.673 \times 10^{-27} + 4 \times 1.675 \times 10^{-27}] - 1.329 \times 10^{-26}$	C1		
	(mass defect =) 1.020 × 10 ⁻²⁸ (kg)		(nucleon mass =) $8 \times 1.661 \times 10^{-27}$ (kg) $(\Delta m =) [8 \times 1.661 \times 10^{-27}] - 1.329 \times 10^{-26}$ (kg)	C1 C1
	BE = mass defect $\times c^2$		(BE =) (-) $2.0 \times 10^{-30} \times (3.0 \times 10^{8})^{2}$ (= 1.8×10^{-13} J) (BE per nucleon =) $1.8 \times 10^{-13}/8$	C1
	(BE =) $1.020 \times 10^{-28} \times (3.0 \times 10^{8})^{2}$ (= 9.180×10^{-12} J)	C1	BE per nucleon = $2.25 \times 10^{-14} (J)$	A1
	(BE per nucleon) = $9.180 \times 10^{-12}/8$			
	BE per nucleon =1.148 × 10 ⁻¹² (J)	A1	Allow 2 sf or 3 sf answer	

(a)	The neutrons interact with other uranium (nuclei) / the neutrons cause further (fission) reactions	B1	Not: neutrons interact with uranium atoms / molecules / particles
(b)	Fuel rod: Contain the <u>uranium</u> (nuclei) / fissile material	B1	Show annotation on Scoris Not 'contains fuel'
	Control rods: Absorb (some of the) neutrons	B1	
	Controlled chain reaction: The control rods are inserted into the reactor so as to allow (on average) one neutron from previous reaction to cause subsequent fission (AW)	B1	QWC mark
	Moderator: Slows down the (fast-moving) neutrons / lowers the KE of (fast moving) neutrons / makes the (fast moving) neutrons into thermal neutrons	B1	
	Slow moving neutrons have a greater chance of causing fission / of being absorbed (by U-235) / sustaining chain reaction	B1	Allow: Fast moving neutrons are captured (easily) by uranium-238 (nuclei leaving insufficient number of nuclei for fission / chain reaction) for the last B1 mark

(c)	(i)	power = $3.0 \times 10^{9}/0.22$ power = 1.36×10^{10} (W) or 1.4×10^{10} (W)	B1	
	(ii)	energy = $1.36 \times 10^{10} \times 8.64 \times 10^4$ energy = 1.18×10^{15} (J) or 1.2×10^{15} (J)	B1	Possible ecf from (c)(i)
	(iii)	(number of reactions per day) = $\frac{1.18 \times 10^{15}}{3.2 \times 10^{-11}}$	C1	Possible ecf from (c)(ii)
		mass = $\frac{1.18 \times 10^{15}}{3.2 \times 10^{-11}} \times 3.9 \times 10^{-25}$ mass = 14.4 (kg) or 14 (kg)	A1	Note : Using 1.2×10^{15} (J) gives an answer of 14.6 (kg); allow 15 (kg)
(d)		Nuclear waste is (radio)active for a long time (AW) Causes ionisation	B1 B1	Allow: 'Nuclear waste can have long half life'

(a)	(i)	momentum / mass-energy / charge / proton number / baryon number / nucleon number	B1	Not: 'energy' on its own
	(ii)	Some basic labelling of neutron(s), Xe and Sr Correct extension of diagram showing at least one of the neutrons interacting with U-235 nucleus and producing neutron(s) and 'fragments'	B1 B1	
(b)	(i)	initial $m = 6.686 \times 10^{-27}$ (kg) or final $m = 6.681 \times 10^{-27}$ (kg) or $\Delta m = 0.005 \times 10^{-27}$ (kg) $\Delta E = 0.005 \times 10^{-27} \times (3.0 \times 10^8)^2$ energy = 4.5×10^{-13} (J)	C1 C1 A1	
	(ii)	kinetic (energy)	B1	Not: heat / sound Allow: (gamma) photons / EM radiation

_	/:::\	VE 31m		
		$KE = \frac{3}{2}kT$		
		$KE = \frac{3}{2} \times 1.38 \times 10^{-23} \times 10^{9}$	C1	
		$KE = 2.1 \times 10^{-14} (J)$	A1	Allow: 1 sf answer or 10 ⁻¹⁴ (J) because the temperature is given as 10 ⁹ K
	(iv)	Some nuclei will have KE greater than the mean KE (and hence cause fusion) (AW)	B1	

(i)	binding energies per nucleus: $^{235}_{92}$ U 7.6 × 235 (= 1786 MeV) $^{141}_{56}$ Ba 8.4 × 141 (= 1184 MeV) $^{92}_{36}$ Kr 8.6 × 92 (= 791 MeV)	1	
	so energy released = (1184 + 791) - 1786	1	
	= 189 MeV	1	[3]
	fails to multiply by nucleon number: $8.4+8.6-7.6 = 9.4$ gets $(0,1,0)$ = $1/3$		
(ii)	number of U-235 atoms in 1.00 kg = $1.00 / (235 \times 1.67 \times 10^{-27}) = 2.55 \times 10^{24}$		
	or $6.02 \times 10^{23} / (0.235) = 2.56 \times 10^{24}$	1	
	so energy released by fission of 1.00 kg of U-235 = $2.55 \times 10^{24} \times 200 \times 1.6 \times 10^{-19} \times 10^{6}$ = 8.2×10^{13} J accept 8×10^{13}	1	
	or $2.55 \times 10^{24} \times 189 \times 1.6 \times 10^{-19} \times 10^{6} = 7.7 \times 10^{13} \text{ J}$		[3]