Date:			•			•									•			
-------	--	--	---	--	--	---	--	--	--	--	--	--	--	--	---	--	--	--

1.

(a) The following nuclear reaction occurs when a slow-moving neutron is absorbed by an isotope of uranium-235.

$$^{1}_{0}$$
n + $^{235}_{92}$ U \rightarrow $^{141}_{56}$ Ba + $^{92}_{36}$ Kr + 3 $^{1}_{0}$ n

(i) Explain how this reaction is able to produce energy.

......[2]

(ii) State in what form the energy is released in such a reaction.

F47
 111

(b) The binding energy per nucleon of each isotope in (a) is given in Fig. 8.1.

icatana	hinding operating purple on /MoV/
isotope	binding energy per nucleon/MeV
²³⁵ U	7.6
141 -	0.0
¹⁴¹ ₅₆ Ba	8.3
⁹² Kr	8.7

Fig. 8.1

(i) Explain why the neutron 1_0 n does not appear in the table above.

[11]

(ii) Calculate the energy released in the reaction shown in (a).

energy = MeV [2]

2.

(a)	Ехр	lain t	he term <i>binding energy</i> of a nucleus.
		•••••	
			[2
(b)			fusion takes place in the core of the Sun. One of the simplest fusion reactions i elow.
			$^{2}_{1}H + ^{2}_{1}H \rightarrow ^{4}_{2}He$
	(i)	The of 4/2	binding energy per nucleon of ${}_{1}^{2}$ H is 1.8×10^{-13} J and the binding energy per nucleo He is 1.1×10^{-12} J. Show that the energy released in the reaction is 3.7×10^{-12} J.
			[2
	(ii)	radi	Sun radiates its energy uniformly through space. The mean intensity of the Sunitation reaching the Earth's atmosphere is about $1400 \text{W} \text{m}^{-2}$. The mean radius of the th's orbit round the Sun is $1.5 \times 10^{11} \text{m}$.
		1	Show that the mean power radiated from the surface of the Sun is $4.0 \times 10^{26} W$.
		2	Assume all the radiated energy from the Sun comes from the fusion reaction show in (b) . Estimate the number of helium-4 nuclei produced every second by the Sun.
			number =s ⁻¹ [2

(a) Explain what is meant by the statement below.

Radioactivity	is	а	random	process.
---------------	----	---	--------	----------

....

(b) Uranium-235 was present during the formation of the Solar System, including the Earth. The percentage of the original quantity of $^{235}_{92}$ U found in rocks today is 1.1%. The half-life of $^{235}_{92}$ U is 7.1 × 10⁸ years. Calculate the age, in years, of the Earth.

(c) Fig. 6.1 shows the variation of binding energy per nucleon against nucleon number A.

Fig. 6.1

	(i)	Use Fig. 6.1 to estimate the value of the nucleon number of the most stable isotope. [1]
	(ii)	Use Fig. 6.1 to explain why nuclei of $^{100}_{42}$ Mo cannot produce energy by fusion .
		[1]
	(iii)	The mass of a 8_4 Be nucleus is 1.329×10^{-26} kg. Use data provided on the second page of the Data, Formulae and Relationships Booklet to determine the binding energy per nucleon for this nucleus.
		binding energy per nucleon =
4.		
The	nucl	ear reaction represented by the equation
		$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{94}_{39}Y + ^{139}_{53}I + 3^{1}_{0}n$
take	es pla	ce in the core of a nuclear reactor at a power station.
(a)	Des	cribe how this reaction can lead to a chain reaction.
		[1]

[5]
the nuclear reactor of a power station, each fission reaction of uranium produce \times 10 ⁻¹¹ J of energy. The electrical power output of the power station is 3.0GW. The
ciency of the system that transforms nuclear energy into electrical energy is 22%. Calculat

(b) Explain the role of fuel rods, control rods and a moderator in a nuclear reactor.

		the total energy output of the reactor core in one day
		$1 \text{ day} = 8.64 \times 10^4 \text{ s}$
		energy output = J [1]
	(iii)	the mass of uranium-235 converted in one day. The mass of a uranium-235 nucleus is
	` ′	3.9×10^{-25} kg.
		mass = kg [2]
(d)	Dis	cuss the physical properties of nuclear waste that makes it dangerous.
		, , , , ,
5.		
5. (a)		e core of a nuclear reactor, one of the many fission reactions of the uranium-235 nucleus
		e core of a nuclear reactor, one of the many fission reactions of the uranium-235 nucleus own below.
		e core of a nuclear reactor, one of the many fission reactions of the uranium-235 nucleus
	is sh	e core of a nuclear reactor, one of the many fission reactions of the uranium-235 nucleus own below.
	is sh	e core of a nuclear reactor, one of the many fission reactions of the uranium-235 nucleus own below.
	is sh	e core of a nuclear reactor, one of the many fission reactions of the uranium-235 nucleus own below.

(ii) Fig. 4.1 illustrates this fission reaction.

Fig. 4.1

Label all the particles in Fig. 4.1 and extend the diagram to show how a chain reaction might develop. [2]

(b) Fusion of hydrogen nuclei is the source of energy in most stars. A typical reaction is shown below.

$$^2_1\text{H} + ^2_1\text{H} \longrightarrow ^3_2\text{He} + ^1_0\text{n}$$

The ^2_1H nuclei repel each other. Fusion requires the ^2_1H nuclei to get very close and this usually occurs at very high temperatures, typically 10^9K .

(i) Use the data below to calculate the energy released in the fusion reaction above.

mass of
$${}_{1}^{2}H$$
 nucleus = 3.343×10^{-27} kg

mass of
$${}_{2}^{3}$$
He nucleus = 5.006×10^{-27} kg

mass of
$${}_{0}^{1}$$
n = 1.675 × 10⁻²⁷ kg

energy = J [3]

(ii)	State in what form the energy in (b)(i) is released.
	[1]
(iii)	The $^2_1\mathrm{H}$ nuclei in stars can be modelled as an ideal gas. Calculate the mean kinetic energy of the $^2_1\mathrm{H}$ nuclei at $10^9\mathrm{K}$.
	energy = J [2]
(iv)	Suggest why some fusion can occur at a temperature as low as 10 ⁷ K.
	[1]
6.	
	particular fission reaction a uranium-235 nucleus absorbs a neutron and undergoes to a barium-141 nucleus and a krypton-92 nucleus. The reaction is as follows:
	$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{141}_{56}Ba + ^{92}_{36}Kr + 3^{1}_{0}n$
data:	binding energies per nucleon for these nuclei are:

 $^{235}_{92}$ U 7.6 MeV; $^{141}_{56}$ Ba 8.4 MeV; $^{92}_{36}$ Kr 8.6 MeV

(i) Show that the energy released when one $^{235}_{92}\mathrm{U}$ nucleus undergoes fission in this way is about 200MeV.

[3]

(ii)	Calculate how much energy is released when 1.00 kg of uranium-235 undergoes fission. Assume that every fission generates the same amount of energy as the reaction stated above.
	energy = J [3]