| TOI | •    |
|-----|------|
| Phy | SICS |
|     | DICD |

## Radioactivity

Date: .....

-1-

| 1.       | The carbon content of living trees includes a small proportion of carbon-14, which is a radioactive isotope. After a tree dies, the proportion of carbon-14 in it decreases due to radioactive decay.       |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) (i)  | The half-life of carbon-14 is 5740 years. Calculate the radioactive decay constant in ${\rm yr}^{-1}$ of carbon-14.<br>[1 mark]                                                                             |
|          | decay constant yr <sup>-1</sup>                                                                                                                                                                             |
| (a) (ii) | A piece of wood taken from an axe handle found on an archaeological site has 0.375 times as many carbon-14 atoms as an equal mass of living wood.  Calculate the age of the axe handle in years.  [3 marks] |
|          | age yr                                                                                                                                                                                                      |
| (b)      | Suggest why the method of carbon dating is likely to be unreliable if a sample is:                                                                                                                          |
| (b) (i)  | [2 marks] less than 200 years old,                                                                                                                                                                          |
| (b) (ii) | more than 60 000 years old.                                                                                                                                                                                 |
|          |                                                                                                                                                                                                             |

- The isotope of uranium, <sup>238</sup><sub>92</sub>U, decays into a stable isotope of lead, <sup>206</sup><sub>82</sub>Pb, by means of a series of α and β<sup>-</sup> decays.
   In this series of decays, α decay occurs 8 times and β<sup>-</sup> decay occurs n times.
- In this series of decays,  $\alpha$  decay occurs 8 times and  $\beta$  decay occurs n times. Calculate n.

|         | answer =                                                  |           |
|---------|-----------------------------------------------------------|-----------|
|         |                                                           | (1 mark)  |
| (b) (i) | Explain what is meant by the binding energy of a nucleus. |           |
|         |                                                           |           |
|         |                                                           |           |
|         |                                                           |           |
|         |                                                           |           |
|         |                                                           |           |
|         |                                                           | (2 marks) |

(b) (ii) Figure 2 shows the binding energy per nucleon for some stable nuclides.

Figure 2



Use Figure 2 to estimate the binding energy, in MeV, of the  $^{206}_{82}\text{Pb}$  nucleus.

 (c) The half-life of  $^{238}_{92}$ U is  $4.5 \times 10^9$  years, which is much larger than all the other half-lives of the decays in the series.

A rock sample when formed originally contained  $3.0\times10^{22}$  atoms of  $^{238}_{92}$ U and no  $^{206}_{82}$ Pb atoms.

At any given time most of the atoms are either  $^{238}_{92}$ U or  $^{206}_{82}$ Pb with a negligible number of atoms in other forms in the decay series.

(c) (i) Sketch on **Figure 3** graphs to show how the number of  $^{238}_{92}$ U atoms and the number of  $^{206}_{82}$ Pb atoms in the rock sample vary over a period of  $1.0 \times 10^{10}$  years from its formation.

Label your graphs U and Pb.

Figure 3



(2 marks)

(c) (ii) A certain time, t, after its formation the sample contained twice as many  $^{238}_{92}$ U atoms as  $^{206}_{82}$ Pb atoms.

Show that the number of  $^{238}_{92}$ U atoms in the rock sample at time t was  $2.0 \times 10^{22}$ .

(1 mark)

| (c) | (iii) | Calculate | t | in | years |
|-----|-------|-----------|---|----|-------|
|-----|-------|-----------|---|----|-------|

| answer = |      | years  |
|----------|------|--------|
|          | (3 n | narks) |

3.

The radioactive radium nuclide  $^{226}_{88}$ Ra decays by alpha-particle emission to an isotope of radon Rn with a half-life of 1600 years.

- (a) State the number of
  - (i) neutrons in a radium nucleus .....[1]
  - (ii) protons in the radon nucleus resulting from the decay ......[1]
- (b) The historic unit of radioactivity is called the curie and is defined as the number of disintegrations per second from 1.0 g of  $^{226}_{88}$ Ra. Show that
  - (i) the decay constant of the radium nuclide is  $1.4 \times 10^{-11} \, \text{s}^{-1}$

1 year = 
$$3.16 \times 10^7$$
 s

[1]

(ii) 1 curie equals  $3.7 \times 10^{10}$  Bq.

[3]

| (c) | Use the data below to show that the energy release in the decay of a single nucleus of $^{226}_{88}\text{Ra}$ by alpha-particle emission is $7.9\times10^{-13}\text{J}.$                                                                                                                                                               |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | nuclear mass of Ra-226 = 226.0254 u<br>nuclear mass of Rn-222 = 222.0175 u<br>nuclear mass of He = 4.0026 u                                                                                                                                                                                                                            |
|     |                                                                                                                                                                                                                                                                                                                                        |
|     | [3]                                                                                                                                                                                                                                                                                                                                    |
| (d) | Estimate the time it would take a freshly made sample of radium of mass $1.0\mathrm{g}$ to increase its temperature by $1.0^\circ\mathrm{C}$ . Assume that $80\%$ of the energy of the alpha-particles is absorbed within the sample so that this is the energy which is heating the sample. Use data from <b>(b)</b> and <b>(c)</b> . |
|     | specific heat capacity of radium = $110  \mathrm{J  kg^{-1}  K^{-1}}$                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                                                                                                                                                        |
|     | time =s [4]                                                                                                                                                                                                                                                                                                                            |
|     |                                                                                                                                                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                                                                                                                                                        |

4.

(a)

The nuclei of carbon-14 are produced naturally in the upper atmosphere from the reactions of slow-moving neutrons with nitrogen nuclei.

| (i) | The reaction below shows a | nuclear reaction between a | a neutron and a ni   | troaen nucleus. |
|-----|----------------------------|----------------------------|----------------------|-----------------|
| 1.7 | The reaction below eneme a | madical reaction between c | a modelioni dila a m | a ogon naoidad. |

$$^1_0$$
n +  $^{14}_7$ N  $\rightarrow$   $^{14}_6$ C +  $\mathbf{X}$ 

Identify the particle X.

| F4 7    |
|---------|
| <br>נין |

(ii) Carbon-14 has a half-life of 5700 years. The molar mass of carbon-14 is  $0.014\,\mathrm{kg\,mol^{-1}}$ . The total activity from all the carbon-14 nuclei found on the Earth is estimated to be  $1.1\times10^{19}\,\mathrm{Bq}$ . Estimate the total mass of carbon-14 on the Earth.

(b)
Energy in the core of a nuclear reactor is produced by induced nuclear fission of uranium-235 nuclei. Explain what is meant by induced nuclear fission.

(c)
Many nuclear reactors use uranium-235 as fuel. Some of these reactors use water as both coolant and moderator. The control rods contain boron-10. Fig. 6.2 shows part of the inside of the core of a nuclear reactor.



Fig. 6.2

| Explain the purpose of using a moderator and control rods in the core of a nuclear reactor. |
|---------------------------------------------------------------------------------------------|
| In your answer you should make clear how a moderator works at a microscopic level.          |
|                                                                                             |
|                                                                                             |
|                                                                                             |
|                                                                                             |
|                                                                                             |
|                                                                                             |
|                                                                                             |
|                                                                                             |
| [4]                                                                                         |