Mixed Exercise 3

- (a) (i) Express $x^2 4x + 9$ in the form $(x p)^2 + q$, where p and q are integers.
 - (ii) Hence, or otherwise, state the coordinates of the minimum point of the curve with equation $y = x^2 4x + 9$. (2 marks)
- (b) The line L has equation y + 2x = 12 and the curve C has equation $y = x^2 4x + 9$.
 - (i) Show that the x-coordinates of the points of intersection of L and C satisfy the equation

$$x^2 - 2x - 3 = 0 (1 mark)$$

Date:

(ii) Hence find the coordinates of the points of intersection of L and C. (4 marks)

2. AOA/Jan 2006/MPC1/O4)

The quadratic equation $x^2 + (m+4)x + (4m+1) = 0$, where m is a constant, has equal roots.

- (a) Show that $m^2 8m + 12 = 0$. (3 marks)
- (b) Hence find the possible values of m. (2 marks)
- 3. Solve,

$$2x^2 - 5x - 7 < 0$$

4. Sketch the following graphs showing the coordinates of the points where they intersect the coordinate axes.

(a)
$$y = (2-x)(x-4)(x-1)$$

(b)
$$y = (x-1)^2(x+6)$$

(c)
$$y = x^3 + 5x^2 + 4x$$

5. (Edexcel/Jan 2005/C2)

- (a) Use the factor theorem to show that (x + 4) is a factor of $2x^3 + x^2 25x + 12$.
- (b) Factorise $2x^3 + x^2 25x + 12$ completely.

(4)

(2)

6. (Edexcel/Jan 2005/C2)

(a) Write down the first three terms, in ascending powers of x, of the binomial expansion of $(1 + px)^{12}$, where p is a non-zero constant.

(2)

Given that, in the expansion of $(1 + px)^{12}$, the coefficient of x is (-q) and the coefficient of x^2 is 11q,

(b) find the value of p and the value of q.

(4)

7. (Edexcel/Jan 2006/C2)

(a) Find all the values of θ , to 1 decimal place, in the interval $0^{\circ} \le \theta < 360^{\circ}$ for which

$$5 \sin (\theta + 30^{\circ}) = 3$$
.

(4)

(b) Find all the values of θ , to 1 decimal place, in the interval $0^{\circ} \le \theta \le 360^{\circ}$ for which

$$\tan^2 \theta = 4$$
.

(5)