
1.						
(a)	Define a vector quar	ntity.				
						F43
						[1]
(b)	Circle all the vector of	quantities in the	e list below.			
	acceleration	speed	time	displacement	weight	[1]

(c) Fig. 1.1 shows graphs of velocity v against time t for two cars \mathbf{A} and \mathbf{B} travelling along a straight level road in the same direction.

At time t = 0, both cars are side-by-side.

(i) Describe the motion of car **A** from t = 0 to t = 10 s.

			distance = m	ı [2]
((iii)	Use	Fig. 1.1 to find	
		1	the time at which both cars have the same velocity	
			time = s	; [1]
		2	the time t at which car ${\bf A}$ overtakes car ${\bf B}$.	
		_		
			t =s	101
			<i>t</i> =	, [2]
				_
(a)	Sta	ate a	similarity and a difference between <i>distance</i> and <i>displacement</i> .	
. ,	(i)		ilarity:	
	()			
	(ii)		erence:	
	(,			
				1

(ii) Calculate the distance travelled by car ${\bf A}$ in the first 4.0 s.

2

(b) Fig. 1.1 shows two airports A and C.

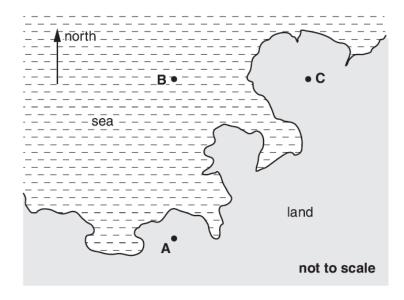


Fig. 1.1

An aircraft flies due north from **A** for a distance of 360 km (3.6 \times 10⁵ m) to point **B**. Its average speed between **A** and **B** is 170 m s⁻¹. At **B** the aircraft is forced to change course and flies due east for a distance of 100 km to arrive at **C**.

(i) Calculate the time of the journey from A to B.

time =	 s l	1	1

(ii) Draw a labelled displacement vector triangle below. Use it to determine the magnitude of the displacement in km of the aircraft at **C** from **A**.

displacement = km [3]

3.

Fig. 2.1 shows a graph of velocity against time for an object travelling in a straight line.

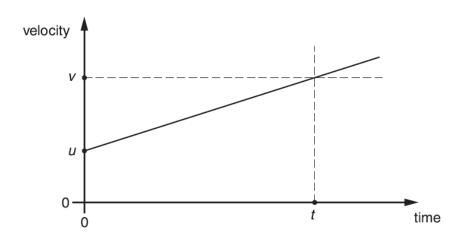


Fig. 2.1

The object has a constant acceleration a. In a time t its velocity increases from u to v.

- (a) Describe how the graph of Fig. 2.1 can be used to determine
 - (i) the acceleration a of the object

B		P
B	/	

In your answer, you should use appropriate technical terms, spelled correctly.

[1]

(ii) the displacement s of the object.

 	 	 	 	[1]

(b) Use the graph of Fig. 2.1 to show that the displacement s of the object is given by the equation:

$$s = ut + \frac{1}{2}at^2$$

	building. The height of the building is known to be 32m. Using a stopwatch, the time taken the stone to fall to the ground is 2.8s.							
((i)	Use this information to determine the acceleration of free fall.						
			acce	leration =	ms ⁻² [2]			
(i	ii)	One possible reason v 9.81 m s ⁻² is the reactic smaller than 9.81 m s ⁻² .	why your answo	er to (c)(i) is smaller t	than the accepted value of reason why the answer is			
					[1]			
Draw a nand sid		e from each unit on the	e left-hand side	e to the correct equiva	alent unit on the right-			
		joule (J)		kg m s ⁻²				
		watt (W)		N m				
		newton (N)		J s ⁻¹				
					[2]			

(c) In order to estimate the acceleration g of free fall, a student drops a large stone from a tall

4

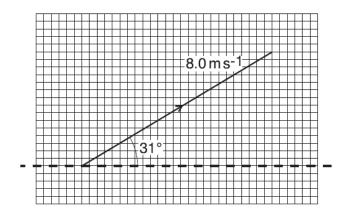
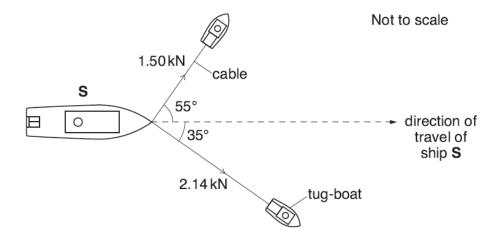


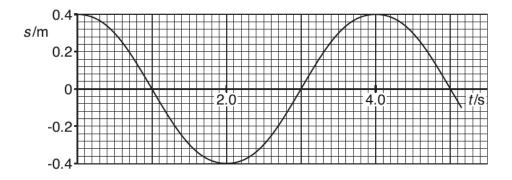
Fig. 4.1

- (i) On Fig. 4.1, show the horizontal (*x*-direction) and vertical (*y*-direction) components of the velocity. [2]
- (ii) Calculate the horizontal (x-direction) component of the velocity.

(b)

Fig. 4.2 shows a ship **S** being pulled by two tug-boats.




Fig. 4.2

The ship is travelling at a constant velocity. The tensions in the cables and the angles made by these cables to the direction in which the ship travels are shown in Fig. 4.2.

(i) Draw a vector triangle and determine the resultant force provided by the two cables.

	resultant force =kN	[3]
(ii)	State the value of the drag force acting on the ship S. Explain your answer.	
		. [2]

6. During an experiment on oscillations one end of a spring is fixed to a point on a roof and a mass is hung vertically from the other end. The mass is pulled down and then released. The diagram below shows the displacement *s* against time *t* graph for the mass.

Use the graph to determine the **maximum** speed of the mass.

ND Total College		C11-1 B1		2.0	n I	C - 11 C - 1 - 1	CD2 ODC
NB Tutors Lta,	Unit 79,	Capital Business	Centre, 2	2 Cariton	коаа,	South Croydon,	CKZ OBS