Simple Harmonic Motion -2 - Answers

1.				
a b c		acceleration ∞ displacement/distance from a fixed point; directed towards that point/indication acc. and displ. in opp. direction	1 1	2
		for symbols without explanation ($a = -\omega^2 \times \text{or a } \infty - x$) max 1 mark arrow downwards through centre of bob, labelled weight/gravity/mg; upward arrow on string, labelled tension reading T = 1.6 s; 2 marks for correct f without working $f = 1/T = 0.625$ to 0.632 ; Hz or s ⁻¹ tangent to graph at displacement = 0; gradient = 0.20 ± 0.03 (m s ⁻¹) or $v = 2\pi fA$; = $2 \times 3.14 \times 0.625 \times 0.05 = 0.20$ (m s ⁻¹) none; as period independent of amplitude doubled; as twice the distance covered in the same time/ from c(ii) or $v \propto -A$ /AW possible ecf from d(i) increased because the gradient is steeper/greater distance in same time worth 1 mark only		
	i		1 1	2
			2	3 2 2
	ii			
đ	i ii		1	
			1	2
2.			amitimos iri	
а	i	acceleration ∞ displacement; indication of restoring force by negative sign/acc. in opp. direction to displacement/acc, towards origin/AW	1	
	ii	linear graph through origin; negative gradient	1 2	4
b	i	0.05 (m)	1	
С	ii i	$4\pi^2 f^2 = a/A$; = 12.5/0.05 = 250 so f = 2.5(1) Hz; T = 1/f (= 0.4 s) cosine wave; correct period of 0.4 s; correct amplitude of 0.05 m	3	4 3
	ii	0; 0.1/0.3/0.5/0.7/0.9 (s)	2	2
3.				
а	i	cosine curve; sensible (exponential) decay of amplitude with time;	1	
	ii	correct period amplitude will decay more rapidly; greater damping/air resistance on	i	
		wings or greater damping; air resistance on wings or oscillation will effectively cease in shorter time; greater energy/amplitude loss per cycle or AW	2	
		frequency will decrease/period increase; greater mass/inertia of system	2	7

(**P.T.O**)

b	•	resonance occurs at /close to the natural frequency of an oscillating object/system	1	
	caused by driving force (at this frequency)	caused by driving force (at this frequency) when maximum energy transfer between driver and driven/maximum	1	
		amplitude achieved max 2 marks small amplitude (≈ that of driver) at low frequencies/less than 1.0 Hz; driver and driven in phase	1 1 2	
	•			
		amplitude rises to maximum; at 1.0 Hz		
		driver and driven 90° out of phase (very) small amplitude at high frequencies/greater than 1.0 Hz driver and driven (180°) out of phase (up to 2 marks can be credited for accurate reference to phase shifts as shown in italics) but max 3	1 2	5
		marks		
4.				
a	i	Fig. 2.1 : x and a in opposite directions/acceleration towards equilibrium point/AW; Fig. 2.2 : proportional graph between x and a/AW <i>Figures not identified max. of 1 mark</i>	1 1	
	ii	$a = 4\pi^2 f^2 x$; $50 = 4\pi^2 f^2 .50 \times 10^{-3}$; giving $f^2 = 25$ and $f = 5.0$ Hz	3	
	iii	cosine wave with initial amplitude 25 mm; decreasing amplitude;	2	0
b	i	correct period of 0.2 s (for minimum of 2.5 periods); the acceleration towards A/centripetal acceleration or force; is constant	1 2	8
~	ii	$a = v^2/r$; so $50 = v^2/10$; $v^2 = 500$ giving $v = 22.4$ m s ⁻¹	3	5
5.				_
(a)	Αn	notion in which the acceleration/force is proportional to the		
		placement; directed towards the centre of oscillation/equilibrium		
	•	sition/AW a α -x or a = $-\omega^2$ x; symbols must be identified	2	[2]
(b)		1 0.025 (m)/2.5 (cm)/25 (mm) tolerance ± 1 mm; 2 marks if correct swer without working; 1 mark for correct method shown but arithmetic or	2	
		2 $T = 0.4 \text{ s or } f = 1/T$	1	
		f = 2.5 (Hz)	1	
		$a = -4\pi^2 f^2 A$ or $ω^2 A$ where meaning of $ω$ given in answer;	1	
		6.2 (m s ⁻²); ecf; 2 marks if correct answer without working	1	
	(111)	1 0.1/0.3/0.5 (s), etc 2 0/0.2/0.4 (s), etc	1	[8]
/->	l			- •
(c)		erted/180 ^o phase shift graph of Fig.3.2 rrect/same period	1 1	
		ale matched to amplitude value of b(ii) ecf labelled on y-axis	1	[3]

6.

(a)	(i)	120 (mJ)	1	1
	(ii)	120 - 70; = 50 (mJ) give 2 marks for correct answer without working	2	2
(b)	(i)	k.e. = $\frac{1}{2}$ mv ² = 50 x 10 ⁻³ = 0.2 v ² ecf from a(ii)	1	
	• •	$v^2 = 0.25$; $v = 0.5$ (m s ⁻¹)	1	2
	(ii)	Reasoning, e.g. max energy = $\frac{1}{2}$ mv _m ² = $\frac{1}{2}$ kA ² so A \propto v _m /AW; or max ke = 12.5 mJ so total energy = 82.5 mJ, read x from graph;	1	
		giving $A = 0.025$ (m)	1	2
(c)	(i)	$a = -4\pi^2 f^2 x$;	1	
. ,		$f^2 = 110/4\pi^2 = 2.786$ / $f = 10.5/2\pi = 1.67$ so $f = 1/T = 0.6$ (s)	1	2
	(ii)	sinusoidal wave with correct period; correct amplitude	2	
	.,	correct phase accept A or -A at 0.15 s	1	3