Partial Fractions

Exercise A

1 Express the following as partial fractions:

a
$$\frac{6x-2}{(x-2)(x+3)}$$

b
$$\frac{2x+11}{(x+1)(x+4)}$$

e
$$\frac{-7x-12}{2x(x-4)}$$

$$\mathbf{d} \ \frac{2x-13}{(2x+1)(x-3)}$$

$$e^{\frac{6x+6}{x^2-9}}$$

$$f = \frac{7-3x}{x^2-3x-4}$$

$$\frac{8-x}{x^2+4x}$$

h
$$\frac{2x-14}{x^2+2x-15}$$

2 Show that $\frac{-2x-5}{(4+x)(2-x)}$ can be written in the form $\frac{A}{4+x} + \frac{B}{2-x}$ where A and B are constants to be found. (3 marks)

3 The expression $\frac{A}{(x-4)(x+8)}$ can be written in partial fractions as $\frac{2}{x-4} + \frac{B}{x+8}$ Find the values of the constants A and B.

4 $h(x) = \frac{2x^2 - 12x - 26}{(x+1)(x-2)(x+5)}, x > 2$

Given that h(x) can be expressed in the form $\frac{A}{x+1} + \frac{B}{x-2} + \frac{C}{x+5}$, find the values of A, B and C. (4 marks)

5 Given that, for x < -1, $\frac{-10x^2 - 8x + 2}{x(2x+1)(3x-2)} \equiv \frac{D}{x} + \frac{E}{2x+1} + \frac{F}{3x-2}$, where D, E and F are constants. Find the values of D, E and F. (4 marks)

6 Express the following as partial fractions:

$$\frac{-5x^2 - 19x - 32}{(x+1)(x+2)(x-5)}$$

7 Express the following as partial fractions:

a
$$\frac{6x^2 + 7x - 3}{x^3 - x}$$

b
$$\frac{8x+9}{10x^2+3x-4}$$

Challenge

Express $\frac{5x^2 - 15x - 8}{x^3 - 4x^2 + x + 6}$ as a sum of fractions with linear denominators.

Exercise B

1
$$f(x) = \frac{3x^2 + x + 1}{x^2(x+1)}, x \ne 0, x \ne -1$$

Given that
$$f(x)$$
 can be expressed in the form $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1}$, find the values of A , B and C .

2
$$g(x) = \frac{-x^2 - 10x - 5}{(x+1)^2(x-1)}, x \neq -1, x \neq 1$$

Find the values of the constants D, E and F such that
$$g(x) = \frac{D}{x+1} + \frac{E}{(x+1)^2} + \frac{F}{x-1}$$
 (4 marks)

- 3 Given that, for x < 0, $\frac{2x^2 + 2x 18}{x(x-3)^2} = \frac{P}{x} + \frac{Q}{(x-3)^2} + \frac{R}{(x-3)^2}$, where P, Q and R are constants, (4 marks) find the values of P, Q and R.
- 4 Show that $\frac{5x^2 2x 1}{x^3 x^2}$ can be written in the form $\frac{C}{x} + \frac{D}{x^2} + \frac{E}{x 1}$ where C, D and E (4 marks) are constants to be found.

5
$$p(x) = \frac{2x}{(x+2)^2}, x \neq -2.$$

Find the values of the constants A and B such that $p(x) = \frac{A}{x+2} + \frac{B}{(x+2)^2}$ (4 marks)

6
$$\frac{10x^2 - 10x + 17}{(2x+1)(x-3)^2} = \frac{A}{2x+1} + \frac{B}{x-3} + \frac{C}{(x-3)^2}, x > 3$$

Find the values of the constants A, B and C . (4 marks)

7 Show that
$$\frac{39x^2 + 2x + 59}{(x^2 + 5)(3x - 1)^2}$$
 can be written in the form $\frac{A}{x + 5} + \frac{B}{3x - 1} + \frac{C}{(3x - 1)^2}$ where
 A, B and C are constants to be found. (4 marks)

8 Express the following as partial fractions:

a
$$\frac{4x+1}{x^2+10x+25}$$
 b $\frac{6x^2-x+2}{4x^3-4x^2+x}$

b
$$\frac{6x^2 - x + 2}{4x^3 - 4x^2 + x}$$

(Exercise C is on the next page.)

Exercise C

$$1 \quad \frac{x^3 + 2x^2 + 3x - 4}{x + 1} \equiv Ax^2 + Bx + C + \frac{D}{x + 1}$$

Find the values of the constants A, B, C and D.

(4 marks)

- 2 Given that $\frac{2x^3 + 3x^2 4x + 5}{x + 3} \equiv ax^2 + bx + c + \frac{d}{x + 3}$ find the values of a, b, c and d. (4 marks)
- 3 $f(x) = \frac{x^3 8}{x 2}$

Show that f(x) can be written in the form $px^2 + qx + r$ and find the values of p, q and r.

(4 marks)

- 4 Given that $\frac{2x^2 + 4x + 5}{x^2 1} \equiv m + \frac{nx + p}{x^2 1}$ find the values of m, n and p. (4 marks)
- Find the values of the constants A, B, C and D in the following identity: $8x^3 + 2x^2 + 5 \equiv (Ax + B)(2x^2 + 2) + Cx + D$ (4 marks)
- $6 \quad \frac{4x^3 5x^2 + 3x 14}{x^2 + 2x 1} \equiv Ax + B + \frac{Cx + D}{x^2 + 2x 1}$

Find the values of the constants A, B, C and D.

(4 marks)

- 7 $g(x) = \frac{x^4 + 3x^2 4}{x^2 + 1}$. Show that g(x) can be written in the form $px^2 + qx + r + \frac{sx^2 + t}{x^2 + 1}$ and find the values of p, q, r, s and t. (4 marks)
- 8 Given that $\frac{2x^4 + 3x^3 2x^2 + 4x 6}{x^2 + x 2} \equiv ax^2 + bx + c + \frac{dx + e}{x^2 + x 2}$ find the values of a, b, c, d and e. (5 marks)
- 9 Find the values of the constants A, B, C, D and E in the following identity:

$$3x^4 - 4x^3 - 8x^2 + 16x - 2 \equiv (Ax^2 + Bx + C)(x^2 - 3) + Dx + E$$
 (5 marks)

- 10 a Fully factorise the expression $x^4 1$. (2 marks)
 - **b** Hence, or otherwise, write the algebraic fraction $\frac{x^4 1}{x + 1}$ in the form $(ax + b)(cx^2 + dx + e)$ and find the values of a, b, c, d and e. (4 marks)