Exercise A

1 The diagram shows the vectors a, b, c and d. Draw a diagram to illustrate these vectors:

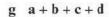
b -b

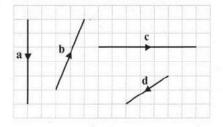
c c - d

d b + c + d

e 2c + 3d

f a - 2b





2 ACGI is a square, B is the midpoint of AC, F is the midpoint of CG, H is the midpoint of GI, D is the midpoint of AI.

 $\overrightarrow{AB} = \mathbf{b}$ and $\overrightarrow{AD} = \mathbf{d}$. Find, in terms of **b** and **d**:

 $\overrightarrow{a} \overrightarrow{AC}$

 \overrightarrow{b} \overrightarrow{BE}

 $c \overrightarrow{HG}$

d \overrightarrow{DF}

e AÉ

 \overrightarrow{DH}

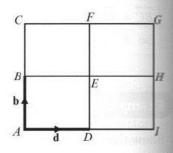
 $\overrightarrow{g} \overrightarrow{HB}$

 $h \overrightarrow{FE}$

i AH

 \overrightarrow{BI}

 $k \overrightarrow{EI}$



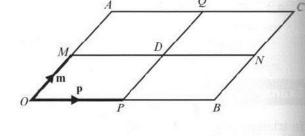
3 OACB is a parallelogram. M, Q, N and P are the midpoints of OA, AC, BC and OB respectively.

Vectors **p** and **m** are equal to \overrightarrow{OP} and \overrightarrow{OM} respectively. Express in terms of p and m.

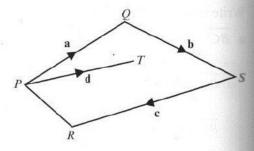
- $a \overrightarrow{OA}$
- $\overrightarrow{\mathbf{b}}$ \overrightarrow{OB}
- $\mathbf{c} \ \overrightarrow{BN}$

- $\overrightarrow{e} \overrightarrow{OD} \qquad \overrightarrow{f} \overrightarrow{MQ} \qquad \overrightarrow{g} \overrightarrow{OQ}$

- $\mathbf{k} \overrightarrow{BM}$



- 4 In the diagram, $\overrightarrow{PQ} = \mathbf{a}$, $\overrightarrow{QS} = \mathbf{b}$, $\overrightarrow{SR} = \mathbf{c}$ and $\overrightarrow{PT} = \mathbf{d}$. Find in terms of a, b, c and d:
 - a OT
- \mathbf{b} PR
- \vec{c} \overrightarrow{TS}
- $\overrightarrow{d} \overrightarrow{TR}$



- 5 In the triangle PQR, PQ = 2a and QR = 2b. The midpoint of PR is M. Find, in terms of \mathbf{a} and \mathbf{b} :
 - $\overrightarrow{a} \overrightarrow{PR}$
- \overrightarrow{PM}
- e OM
- 6 ABCD is a trapezium with AB parallel to DC and DC = 3AB. M divides DC such that DM: MC = 2:1. $\overrightarrow{AB} = \mathbf{a}$ and $\overrightarrow{BC} = \mathbf{b}$. Find, in terms of a and b:
 - a AM
- $\mathbf{b} \ \overrightarrow{BD}$
- c MB
- $d \overrightarrow{DA}$

Problem-solving

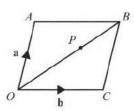
Draw a sketch to show the information given in the question.

7 OABC is a parallelogram. $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OC} = \mathbf{b}$.

The point P divides OB in the ratio 5:3.

Find, in terms of a and b:

- a OB
- \overrightarrow{OP}



- 8 State with a reason whether each of these vectors is parallel to the vector $\mathbf{a} 3\mathbf{b}$:
 - a 2a 6b b 4a 12b c a + 3b

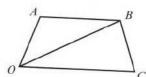
- d 3b a
- e 9b 3a

9 In triangle ABC, $\overrightarrow{AB} = \mathbf{a}$ and $\overrightarrow{AC} = \mathbf{b}$.

P is the midpoint of AB and Q is the midpoint of AC.

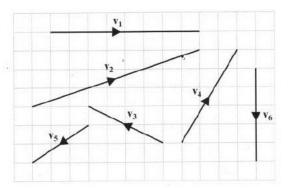
- a Write in terms of a and b:
 - \overrightarrow{BC}
- ii \overrightarrow{AP}
- iii \overrightarrow{AO}
- **b** Show that PO is parallel to BC.

- 10 OABC is a quadrilateral. $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OC} = 3\mathbf{b}$ and $\overrightarrow{OB} = \mathbf{a} + 2\mathbf{b}$.
 - a Find, in terms of a and b:
 - iAB
- ii CB
- **b** Show that AB is parallel to OC.
- 11 The vectors $2\mathbf{a} + k\mathbf{b}$ and $5\mathbf{a} + 3\mathbf{b}$ are parallel. Find the value of k.



Exercise B

1 These vectors are drawn on a grid of unit squares. Express the vectors v_1 , v_2 , v_3 , v_4 , v_5 and v_6 in i, i notation and column vector form.



- 2 Given that $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j}$ and $\mathbf{b} = 4\mathbf{i} \mathbf{j}$, find these vectors in terms of \mathbf{i} and \mathbf{j} .
 - a 4a
- $\mathbf{b} = \frac{1}{2}\mathbf{a}$
- c -b
- d 2b + a

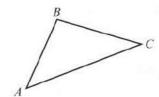
- e 3a 2b
- f b 3a
- g 4b a
- h 2a 3b

- 3 Given that $\mathbf{a} = \begin{pmatrix} 9 \\ 7 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 11 \\ -3 \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} -8 \\ -1 \end{pmatrix}$ find:
 - a 5a
- c a + b + c
- d 2a b + c

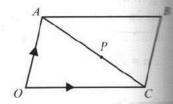
- **a** 5**a b** $-\frac{1}{2}$ **c e** 2**b** + 2**c** 3**a f** $\frac{1}{2}$ **a** + $\frac{1}{2}$ **b**

- 4 Given that $\mathbf{a} = 2\mathbf{i} + 5\mathbf{j}$ and $\mathbf{b} = 3\mathbf{i} \mathbf{j}$, find:
 - $\mathbf{a} \lambda$ if $\mathbf{a} + \lambda \mathbf{b}$ is parallel to the vector \mathbf{i}
- **b** μ if μ **a** + **b** is parallel to the vector **j**
- 5 Given that c = 3i + 4j and d = i 2j, find:
 - $\mathbf{a} \ \lambda \text{ if } \mathbf{c} + \lambda \mathbf{d} \text{ is parallel to } \mathbf{i} + \mathbf{j}$
- **b** μ if μ **c** + **d** is parallel to **i** + 3**j**
- \mathbf{c} s if $\mathbf{c} s\mathbf{d}$ is parallel to $2\mathbf{i} + \mathbf{j}$
- **d** t if $\mathbf{d} t\mathbf{c}$ is parallel to $-2\mathbf{i} + 3\mathbf{j}$
- 6 In triangle \overrightarrow{ABC} , $\overrightarrow{AB} = 4\mathbf{i} + 3\mathbf{j}$ and $\overrightarrow{AC} = 5\mathbf{i} + 2\mathbf{j}$. Find \overrightarrow{BC} .

(2 marks)



- 7 *OABC* is a parallelogram. *P* divides *AC* in the ratio 3:2. $\overrightarrow{OA} = 2\mathbf{i} + 4\mathbf{j}$, $\overrightarrow{OC} = 7\mathbf{i}$. Find in \mathbf{i} , \mathbf{j} format and column vector format:
 - $\overrightarrow{a}\overrightarrow{AC}$
- $\overrightarrow{\mathbf{b}} \overrightarrow{AP}$
- \overrightarrow{oP}



8
$$\mathbf{a} = \begin{pmatrix} j \\ 3 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 10 \\ k \end{pmatrix}, \mathbf{c} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

Given that $\mathbf{b} - 2\mathbf{a} = \mathbf{c}$, find the values of j and k.

(2 marks)

Problem-solving

You can consider $\mathbf{b} - 2\mathbf{a} = \mathbf{c}$ as two linear equations. One for the *x*-components and one for the *y*-components.

9
$$\mathbf{a} = \begin{pmatrix} P \\ -q \end{pmatrix}, \mathbf{b} = \begin{pmatrix} q \\ P \end{pmatrix}, \mathbf{c} = \begin{pmatrix} 7 \\ 4 \end{pmatrix}$$

Given that $\mathbf{a} + 2\mathbf{b} = \mathbf{c}$, find the values of p and q.

(2 marks)

- 10 The resultant of the vectors $\mathbf{a} = 3\mathbf{i} 2\mathbf{j}$ and $\mathbf{b} = p\mathbf{i} 2p\mathbf{j}$ is parallel to the vector $\mathbf{c} = 2\mathbf{i} 3\mathbf{j}$. Find:
 - \mathbf{a} the value of p

(4 marks)

b the resultant of vectors **a** and **b**.

(1 mark)

Exercise C

1 Find the magnitude of each of these vectors.

$$\mathbf{a} \ 3\mathbf{i} + 4\mathbf{j}$$

$$d 2i + 4j$$

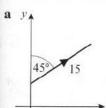
$$f 4i + 7j$$

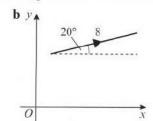
$$g - 3i + 5j$$

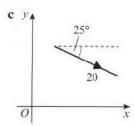
$$h \ -4i-j$$

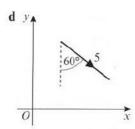
- 2 $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j}$, $\mathbf{b} = 3\mathbf{i} 4\mathbf{j}$ and $\mathbf{c} = 5\mathbf{i} \mathbf{j}$. Find the exact value of the magnitude of:
 - a a + b
- b 2a c
- c 3b 2c
- 3 For each of the following vectors, find the unit vector in the same direction.
 - $\mathbf{a} \ \mathbf{a} = 4\mathbf{i} + 3\mathbf{j}$
- **b b** = 5i 12j
- c c = -7i + 24i
- $\mathbf{d} \cdot \mathbf{d} = \mathbf{i} 3\mathbf{j}$

- 4 Find the angle that each of these vectors makes with the positive x-axis.
 - $\mathbf{a} \ 3\mathbf{i} + 4\mathbf{i}$
- $\mathbf{b} \ 6\mathbf{i} 8\mathbf{j}$
- c 5i + 12i
- $\mathbf{d} \ 2\mathbf{i} + 4\mathbf{j}$
- 5 Find the angle that each of these vectors makes with i.
 - $\mathbf{a} \ 3\mathbf{i} 5\mathbf{j}$
- b 4i + 7i
- c 3i + 5j
- $\mathbf{d} 4\mathbf{i} \mathbf{j}$
- 6 Write these vectors in i, j and column vector form.









- 7 Draw a sketch for each vector and work out the exact value of its magnitude and the angle it makes with the positive x-axis to one decimal place.
 - a 3i + 4i
- b 2i i
- c -5i + 2i
- 8 Given that $|2\mathbf{i} k\mathbf{j}| = 2\sqrt{10}$, find the exact value of k.

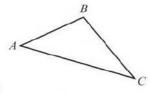
(3 marks)

9 Vector $\mathbf{a} = p\mathbf{i} + q\mathbf{j}$ has magnitude 10 and makes an angle θ with the positive x-axis where $\sin \theta = \frac{3}{5}$. Find the possible values of p and q.

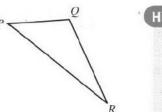
Problem-solving

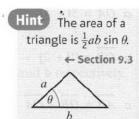
Make sure you consider all the possible cases.

- 10 In triangle ABC, $\overrightarrow{AB} = 4\mathbf{i} + 3\mathbf{j}$, $\overrightarrow{AC} = 6\mathbf{i} 4\mathbf{j}$.
 - a Find the angle between \overrightarrow{AB} and i.
 - **b** Find the angle between \overrightarrow{AC} and **i**.
 - e Hence find the size of $\angle BAC$, in degrees, to one decimal place.



- 11 In triangle \overrightarrow{PQR} , $\overrightarrow{PQ} = 4\mathbf{i} + \mathbf{j}$, $\overrightarrow{PR} = 6\mathbf{i} 8\mathbf{j}$.
 - a Find the size of $\angle QPR$, in degrees, to one decimal place. (5 marks)
 - **b** Find the area of triangle PQR. (2 marks)





Exercise D

- 1 The points A, B and C have coordinates (3, -1), (4, 5) and (-2, 6) respectively, and O is the origin. Find, in terms of i and i:
 - a i the position vectors of A, B and C
- ii AB

- **b** Find, in surd form: i |OC|
- ii |AB|

- $\overrightarrow{OP} = 4\mathbf{i} 3\mathbf{j}, \overrightarrow{OO} = 3\mathbf{i} + 2\mathbf{j}$
 - a Find \overrightarrow{PQ}
 - **b** Find, in surd form: i |OP|
- ii |00|

- $\overrightarrow{OQ} = 4\mathbf{i} 3\mathbf{j}, \overrightarrow{PQ} = 5\mathbf{i} + 6\mathbf{j}$
 - a Find \overrightarrow{OP}
 - **b** Find, in surd form: i |OP|
- ii $|\overrightarrow{OO}|$ iii $|\overrightarrow{PO}|$
- 4 OABCDE is a regular hexagon. The points A and B have position vectors a and b respectively, where O is the origin.

Find, in terms of a and b, the position vectors of

- c E.
- 5 The position vectors of 3 vertices of a parallelogram are $\binom{4}{2}$, $\binom{3}{5}$ and $\binom{8}{6}$.

Find the possible position vectors of the fourth vertex.

Problem-solving

Use a sketch to check that you have considered all the possible positions for the fourth vertex.

- 6 Given that the point A has position vector $4\mathbf{i} 5\mathbf{j}$ and the point B has position vector $6\mathbf{i} + 3\mathbf{j}$,
 - a find the vector AB.

(2 marks)

b find |AB| giving your answer as a simplified surd.

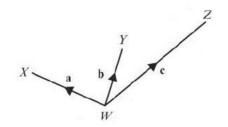
(2 marks)

7 The point A lies on the circle with equation $x^2 + y^2 = 9$. Given that $\overrightarrow{OA} = 2k\mathbf{i} + k\mathbf{j}$, find the exact value of k.

(3 marks

Exercise E

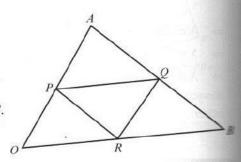
1 In the diagram, $\overrightarrow{WX} = \mathbf{a}$, $\overrightarrow{WY} = \mathbf{b}$ and $\overrightarrow{WZ} = \mathbf{c}$. It is given that $\overrightarrow{XY} = \overrightarrow{YZ}$. Prove that $\mathbf{a} + \mathbf{c} = 2\mathbf{b}$.



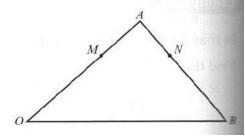
2 OAB is a triangle. P, Q and R are the midpoints of OA, AB and OB respectively.

OP and OR are equal to p and r respectively.

- a Find i \overrightarrow{OB}
- **b** Hence prove that triangle *PAQ* is similar to triangle *OAB*.



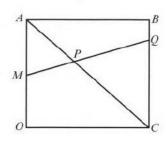
- 3 OAB is a triangle. $OA = \mathbf{a}$ and $OB = \mathbf{b}$. The point M divides OA in the ratio 2:1. MN is parallel to OB.
 - **a** Express the vector \overrightarrow{ON} in terms of **a** and **b**.
 - **b** Show that AN: NB = 1:2



4 OABC is a square. M is the midpoint of OA, and Q divides BC in the ratio 1:3.

AC and MQ meet at P.

- **a** If $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OC} = \mathbf{c}$, express \overrightarrow{OP} in terms of \mathbf{a} and \mathbf{c} .
- **b** Show that *P* divides *AC* in the ratio 2:3.



5 In triangle ABC the position vectors of the vertices A, B and C are $\binom{5}{8}$, $\binom{4}{3}$ and $\binom{7}{6}$. Find:

 $\mathbf{a} \mid \overrightarrow{AB} \mid$

 $\mathbf{b} \mid \overrightarrow{AC} \mid$

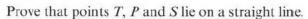
 $c \mid \overrightarrow{BC} \mid$

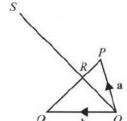
- **d** the size of $\angle BAC$, $\angle ABC$ and $\angle ACB$ to the nearest degree.
- 6 OPQ is a triangle.

$$2\overrightarrow{PR} = \overrightarrow{RQ} \text{ and } 3\overrightarrow{OR} = \overrightarrow{OS}$$

 $\overrightarrow{OP} = \mathbf{a} \text{ and } \overrightarrow{OQ} = \mathbf{b}.$

- a Show that $\overrightarrow{OS} = 2\mathbf{a} + \mathbf{b}$.
- **b** Point *T* is added to the diagram such that $\overrightarrow{OT} = -\mathbf{b}$.





Problem-solving

To show that T, P and S lie on the same straight line you need to show that any

two of the vectors \overrightarrow{TP} , \overrightarrow{TS} or \overrightarrow{PS} are parallel.

Exercise F

1 Find the speed of a particle moving with these velocities:

a (3i + 4j) m s⁻¹

b $(24i - 7j) \text{ km h}^{-1}$

c $(5i + 2j) \text{ m s}^{-1}$

d (-7i + 4j) cm s⁻¹

Hint Speed is the magnitude of the velocity vector.

2 Find the distance moved by a particle which travels for:

- a 5 hours at velocity (8i + 6j) km h⁻¹
- **b** 10 seconds at velocity $(5\mathbf{i} \mathbf{j}) \,\mathrm{m}\,\mathrm{s}^{-1}$
- c 45 minutes at velocity (6i + 2j) km h⁻¹
- **d** 2 minutes at velocity $(-4\mathbf{i} 7\mathbf{j})$ cm s⁻¹.

Hint Find the speed in each case then use:

Distance travelled = speed × time

3 Find the speed and the distance travelled by a particle moving in a straight line with:

a velocity (-3i + 4j) m s⁻¹ for 15 seconds

b velocity $(2\mathbf{i} + 5\mathbf{j})$ m s⁻¹ for 3 seconds

c velocity $(5i - 2j) \text{ km h}^{-1}$ for 3 hours

- d velocity (12i 5j) km h⁻¹ for 30 minutes.
- 4 A particle *P* is accelerating at a constant speed. When t = 0, *P* has velocity $\mathbf{u} = (2\mathbf{i} + 3\mathbf{j}) \,\text{m s}^{-1}$ and at time $t = 5 \,\text{s}$, *P* has velocity $\mathbf{v} = (16\mathbf{i} - 5\mathbf{j}) \,\text{m s}^{-1}$.

Hint The units of acceleration will be m/s² or m s-².

The acceleration vector of the particle is given by the formula: $\mathbf{a} = \frac{\mathbf{v} - \mathbf{u}}{t}$

Find the acceleration of P in terms of i and j.

- 5 A particle P of mass m = 0.3 kg moves under the action of a single constant force F newtons. The acceleration of P is a = (5i + 7j) m s⁻².
 - a Find the angle between the acceleration and i.

(2 marks)

Force, mass and acceleration are related by the formula F = ma.

b Find the magnitude of F.

(3 marks)

- 6 Two forces, \mathbf{F}_1 and \mathbf{F}_2 , are given by the vectors $\mathbf{F}_1 = (3\mathbf{i} 4\mathbf{j}) \, \mathbf{N}$ and $\mathbf{F}_2 = (p\mathbf{i} + q\mathbf{j}) \, \mathbf{N}$. The resultant force, $\mathbf{R} = \mathbf{F}_1 + \mathbf{F}_2$ acts in a direction which is parallel to the vector $(2\mathbf{i} \mathbf{j})$.
 - a Find the angle between R and the vector i.

(2 marks)

b Show that p + 2q = 5.

(3 marks)

c Given that p = 1, find the magnitude of **R**.

(3 marks)

7 The diagram shows a sketch of a field in the shape of a triangle ABC.

Given
$$\overrightarrow{AB} = 30\mathbf{i} + 40\mathbf{j}$$
 metres and $\overrightarrow{AC} = 40\mathbf{i} - 60\mathbf{j}$ metres,

a find \overrightarrow{BC}

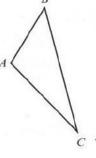
(2 marks)

b find the size of $\angle BAC$, in degrees, to one decimal place

(4 marks)

c find the area of the field in square metres.

(3 marks)



- 8 A boat A has a position vector of $(2\mathbf{i} + \mathbf{j})$ km and a buoy B has a position vector of $(6\mathbf{i} 4\mathbf{j})$ km, relative to a fixed origin O.
 - a Find the distance of the boat from the buoy.
 - b Find the bearing of the boat from the buoy.

The boat travels with constant velocity (8i - 10j) km/h.

- c Verify that the boat is travelling directly towards the buoy
- d Find the speed of the boat.
- e Work out how long it will take the boat to reach the buoy.

Problem-solving

Draw a sketch showing the initial positions of the boat, the buoy and the origin.