Answers – Electric Fields 3

1.

(a)		(Electric field strength is the) force per (unit positive) charge Parallel and equally spaced lines at right angles to plates Correct upward direction of field shown on at least one	B1 B1 B1	Allow: $E = F/Q$, F is the force on a (positive) charge Q
(c)	(i)	field line An arrow vertically downwards at P	B1	
	(ii)	$E = \frac{3400}{0.050} \text{or} E = 6.8 \times 10^4 (\text{V m}^{-1})$ $a = \frac{EQ}{m}$ $a = \frac{6.8 \times 10^4 \times 1.6 \times 10^{-19}}{9.11 \times 10^{-31}} \text{or} a = \frac{1.09 \times 10^{-14}}{9.11 \times 10^{-31}}$ acceleration = 1.19 × 10 ¹⁶ (m s ⁻²) or 1.2 × 10 ¹⁶ (m s ⁻²)	C1 C1 A0	Vital: Candidates using separation of 0.050 cm must be awarded full credit for the analysis shown below $E = \frac{3400}{0.050 \times 10^{-2}} \text{or} E = 6.8 \times 10^6 (\text{V m}^{-1}) \text{C1}$ $a = \frac{EQ}{m}$ $a = \frac{6.8 \times 10^6 \times 1.6 \times 10^{-19}}{9.11 \times 10^{-31}} \text{C1}$ acceleration = 1.19 × 10 ¹⁸ (m s ⁻²)
	(iii)	$t = \frac{0.04}{4.0 \times 10^7}$ time = 1.0 × 10 ⁻⁹ (s)	B1	Allow: 1 × 10 ⁻⁹ (s) or 10 ⁻⁹ (s)
	(iv)	initial vertical velocity = 0, final vertical velocity = at vertical velocity = $1.2 \times 10^{16} \times 1.0 \times 10^{-9}$ (Allow: $1 \times 10^{16} \times 1.0 \times 10^{-9}$) vertical velocity = 1.2×10^{7} (m s ⁻¹)	M1 A0	Vital: Candidates using separation of 0.050 cm must be awarded full credit for the analysis shown below vertical velocity = $1.2 \times 10^{18} \times 1.0 \times 10^{-9}$ M1 vertical velocity = 1.2×10^{9} (m s ⁻¹) A0

(v)	$v^2 = (4.0 \times 10^7)^2 + (1.2 \times 10^7)^2$ velocity = 4.2×10^7 (m s ⁻¹) Or $v^2 = (4.0 \times 10^7)^2 + (1 \times 10^7)^2$ velocity = 4.1×10^7 (m s ⁻¹)	C1 A1 C1 A1	Possible ecf from (iv)
(vi)	KE = $\frac{1}{2} mv^2$ KE = $0.5 \times 9.11 \times 10^{-31} \times (4.2 \times 10^7)^2$ kinetic energy = 8.04×10^{-16} (J) or 8.0×10^{-16} (J)	C1 A1	Possible ecf from (v) Allow: 1 sf answer if the answer comes out as 8.0 × 10 ⁻¹⁶ (J)
(vii)	Graph starts at non-zero value for E_k Between 0 and 0.08 (m) the graph has increasing gradient Horizontal line after 0.080 (m)	B1 B1 B1	Note: The E_k value for the horizontal line > E_k value at $x = 0$

а	(i)	uniformly spaced, vertical parallel lines must		ignore any edge effects
		begin and end on the plates with a minimum of		
		three lines	B1	
		and the constant of the state o		
<u> </u>		arrow in the correct direction down	B1	
	(ii)	$E = V/d$ $E = 60 / 5 \times 10^{-3}$		
<u> </u>		= 12000 (V m ⁻¹)	A1	
b	(i)	Use of energy qV and kinetic energy = ½ mv²	M1	
		$V = [(2qV)/m]^{1/2}$		
		v – [(2qv)/III]		
		$V = [(2 \times 3.2 \times 10^{-19} \times 400)/6.6 \times 10^{-27}]^{1/2}$		
		V = [(2 × 3.2 × 10 × 400)/0.0 × 10]	M1	
		$v = 1.97 \times 10^5 \text{ (m s}^{-1}\text{)}$	A0	
		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	۸۰	
	(ii)	a = F / m a = Eq / m	C1	Both required for the mark
		$a = (12000 \times 3.2 \times 10^{-19}) / 6.6 \times 10^{-27})$		
		5.00 4011 (-2)		
_		$= 5.82 \times 10^{11} \text{ (m s}^{-2}\text{)}$	A1	
	(iii)	1 $t = (16 \times 10^{-3}) / 2 \times 10^{5}$	M1	Answer will depend on number of sf used by candidate.
		$= 8 \times 10^{-8} (s)$		
		- 0 X IU (S)	A0	
		2 s = $\frac{1}{2}$ a x t ² = $\frac{1}{2}$ [5.82 x 10 ¹¹ x (8 x 10 ⁻⁸) ²]	C1	Using u = 2 x 10 ⁵ scores 0/2
				55g a 2 x .5 555155 5/2
		$= 1.86 \times 10^{-3} \text{ (m)}$	A1	Allow slight variation in answers that follow from the candidates
				working

С	Eq = Bqv	C1	
	$B = E / v = 12000 / 2 \times 10^5$	C1	
	= 0.060 (T)	A1	Allow one sf unless answer is 0.061 when using v =1.97 x 10 ⁵
d	velocity (produced by p.d / 400 V) is less	B1	
	force due the magnetic field is reduced / Bqv is less / force due to the electric field is unchanged hence beam deflects down	B1	Allow the resultant force is downward Allow towards the lower plate

3.

```
a six or more equally spaced horizontal lines from plate to plate arrows towards -36 V plate 1 2

b i E = V/d = 36/8 \times 10^{-3} = 4500 \text{ (N C}^{-1)} 1

ii F = eE = 1.6 \times 10^{-19} \times 4500 = 7.2 \times 10^{-16} \text{ (N)} 1

iii \Delta \epsilon = eV or Fd = 1.6 \times 10^{-19} \times 36 or 7.2 \times 10^{-16} \times 8 \times 10^{-3} = 5.76 \times 10^{-18} \text{ (J)} 1

iv 1/2\text{mv}^2 = 1/2\text{mu}^2 \pm \Delta \epsilon or v^2 = u^2 \pm 2\text{Fd/m} 1

v^2 = 16 \times 10^{12} - 11.5 \times 10^{-18}/9.1 \times 10^{-31} = 3.4 \times 10^{12} ecf b(ii) or (iii) 1

\Delta v = u - v = 4.0 \times 10^6 - 1.8 \times 10^6 = 2.2 \times 10^6 \text{ (m s}^{-1)} 1 6

c i F is / from P to Q/downwards/towards -36 V plate 1 magnetic force (Bev) is in the opposite direction to the electric force (eE) 1 these can be made equal and opposite (by adjusting B) (so that the electrons are undeviated by Newton 1)

iii Bev = eE; B = E/v = 4500/4 \times 10^6; = 1.125 \times 10^{-3}; T or 1.125 \text{ mT} 4 7
```

4.

а	i	appropriate shape; lines perpendicular to and touching plate and sphere;		
		arrows towards negative charge		3
b		E = V/d = 50000/0.04; =1.25 x 10 ⁶ (N C ⁻¹)	2	
		$F = QE = 5 \times 10^{-9} \times 1.25 \times 10^{6}$; = 6.25 x 10 ⁻³ (N) ecf b(i)	2	4
С		$F = Q^2 / 4\pi \epsilon_0 r^2$; = 9 x 10 ⁹ x25 x 10 ⁻¹⁸ /16 x 10 ⁻⁴ ; = 1.406 x 10 ⁻⁴ (N)	3	
	ii	Δ m = 1.4 x 10 ⁻⁵ kg or 0.014 g ; giving new reading as 8.219 g	2	5

5.

a		Positive as E-field is downwards/top plate is positive/like charges		
		repel/AW	1	1
b	i	k.e. = QV; = $300 \times 1.6 \times 10^{-19} = (4.8 \times 10^{-17} \text{ J})$	2	
	ii	$1/2$ mv ² = 4.8 x 10^{-17} ; = 0.5 x 2.3 x 10^{-26} x v ² so v ² = 4.17 x 10^{9} ;	2	4
		(giving $v = 6.46 \times 10^4 \text{ m s}^{-1}$)		
c		$E = V/d$; so $d = V/E = 600/4 \times 10^4 = 0.015 \text{ m}$	2	2
d	i	semicircle to right of hole $ecf(a)$; (a) and $d(i)$ to be consistent	1	
	ii	mv^2/r ; = BQv;	2	
		giving $r = mv/BQ = 2.3 \times 10^{-26} \times 6.5 \times 10^{4}/(0.17 \times 1.6 \times 10^{-19});$	1	
		r = 55 mm; so distance = $2r = 0.11 m$	2	6