Particle Physics | 1. | | |-----|---| | | An electron is an example of a <i>lepton</i> and a proton is an example of a <i>hadron</i> . State a property of a hadron. | | | | | | [1] | | (b) | State the charge, in terms of the elementary charge e , on an up quark and a down quark. | | | charge on up quark = e charge on down quark = e [1] | | (c) | The quark composition of a neutron is u d d. State the quark composition of a proton. | | | [1] | | (d) | In large particle accelerators, short-lived particles called pions are created by colliding high-speed protons (p) with stationary neutrons (n). The equation below shows a reaction in which a negative pion (π^-) is produced. | | | $p + n \rightarrow p + p + \pi^-$ | | | The π^- particle consists of a quark and an anti-quark. Use the information provided about the neutron and your answer to (c) to write an equation for the reaction in terms of up (u) and down (d) quarks. Hence determine the quark composition of the π^- particle. | [3] | (e) (i) State Einstein's mass-energy equation and define all the terms. [1] (ii) In the reaction $p + n \rightarrow p + p + \pi^-$ the π^- particle is produced when the proton colliding with a stationary neutron has a minimum kinetic energy of 1.4 \times 10⁸ eV. The mass of a proton and a neutron may be assumed to be the same. Calculate the mass of the π^- particle. 2. Fig. 6.1 shows the quark composition of some particles. | proton | neutron | Α | В | С | |---------|---------|---|-----|---------| | (u) (u) | u d | | (U) | (I) (I) | Fig. 6.1 (i) Identify the anti-proton from the table of particles shown in Fig. 6.1. [1] (ii) State the value of the charge of particle **B**.