Moments 2 - Answers

1.

(a)		the point (in a body) ✓ where the weight (or gravity) of the object appears to act [or resultant torque zero] ✓	2
(b)	(i) (ii)	$P \times 0.90 = 160 \times 0.50 \checkmark$ $P = 89 \text{ N} \checkmark (88.9 \text{ N})$ $Q = (160 - 89) = 71 \text{ N} \checkmark$ (allow C.E. for value of P from (i))	3
(c)		(minimum) force \times 0.10 = 160 \times 0.40 \checkmark force = 640 N \checkmark	2
(d)		force is less ✓ because distance to pivot is larger ✓ smaller force gives large enough moment ✓	3

2.

		+	
(a)	(i)	force × perpendicular distance ✓	2
		between line of action of force and the point ✓	
(a)	(ii)	rear ✓	
		at rear + idea that centre of mass is closer to the rear wheel (than to the front wheel) \checkmark	2
(a)	(iii)	14000 × 1.4 = F × 2.5 ✓	
		F = 7840 (N) ✓	
		divides their final answer by 2 ✓	4
		= 3900 (N) ✓ (3922)	
(b)		$(F = k\Delta l) \frac{F}{k}$ or $(\Delta l =) \frac{a(iii)}{100000} \checkmark$	2
		= 0.039 (m) ✓ ecf	
(c)		F = (100000 × 0.065 =) 6500 (N) ✓	2
		F = (2 × 6500) = 13000 (N) ✓	2
			•

(a)	(sum of) clockwise moments (about a point) =(sum of) anticlockwise moments ✓	2
	(for a system) in equilibrium ✓ accept balanced not stationary	
(b)	(780 × 0.35 =) 270 (Nm) ✓ (273)	
	Nm ✓ or newton metre(s) accept Newton metre(s) (not J, nm or nM, Nms, etc)	2
(c)	1 (b) + (1100 x 0.60) ✓	
	(=) F _A × 1.3 ✓ (F _A = 660 + 273/1.3 gets both marks)	
	(= 933/1.3) = 720 (N) ✓ (717.7 or 715 for use of 930) ecf 1 (b)	4
	2 sf only ✓ independent mark	
(d)	(780 +1100 – (1(c)) = 1200 ✓ (1162 N) ecf 1 (c)	1
(e)	$\left(F = \frac{P}{v}\right) = \frac{7.5 \left(\times 10^{2}\right)}{26} \checkmark$ must be arranged in this form	2
	= 290 (N) ✓ (288.46)	

4.

(-\(!\			D4
(a)(i)	moment: ion	ce x perpendicular distance to the pivot / axis / point	B1
(ii)	pivot is equa pivot/axis/po	m / balanced the sum of the clockwise moments about a al to the sum of anticlockwise moments (about the same bint) noments equal the anticlockwise moments scores one only)	B2
(b)(i)	total mass =	= (1000 + 250) / 9.81	C1
		= (127.42) or (127.55 if 9.8 used)	
	(allow one m	nark for the individual masses being calculated)	
	volume =	= 2 x 3.5 x 10 ⁻²	C1
	-	= (7.0 x 10 ⁻²)	
		= mass / volume	
		= 127.42 / (7.0 x 10 ⁻²)	M1
	hence densi	ty = 1820 (kgm ⁻³) (1822 using 9.8)	Α0
(c)(i)	moments ab	out P (or other named and suitable point)	B1
	1000 x 0.2 =	200 or equivalent moment	C1
		c 0.8 = 200 or equivalent moment	C1
	hence P is 0	0.4 + 0.8 = 1.2 m from B	A 0
(ii)	P is the cent	tre of gravity / mass (of the whole pillar)	B1
	(Allow the po	oint where the total weight acts)	

(a)(i)	point where the weight (allow mass) (appears to) acts	B 1
(ii)	force x perpendicular distance from (line of action to) point/pivot any missing points in the definitions -1	B2
(b)(i)	force up at A at pivot point force due to the weight of man down near centre of body support from scale up within pad ignore labels for reaction forces at A and B (arrows only needed), weight of man needs a label to distinguish from W weight of plank	ВЗ
(ii)	anticlockwise moments = clockwise moments seen or implied	C1
	$5g \times 1 + 75g \times d = 44g \times 2$	C1
	d = (88g - 5g) / 75g	C1
	= 1.1 (m)	A1
	(if weight of plank ignored then max score of 2)	

6.

(a) 1. sum of the moments (about any point) is zero / no resultant torque		
2. sum of all the forces acting is zero / no resultant force		
(b)(i)	$F_B \times 1.7 = (80 \times 0.85) + (650 \times 1.3)$ One moment correct allow 1	B2
	Analysis leading to 537 N i.e. $F_B = 913 / 1.7$	B 1
	F = 540 (537) (N)	A 0
(ii)	$F_A = 650 + 80 - 540 \text{ or } F \times 1.7 = 650 \times 0.4 + 80 \times 0.85$	C1
	= 190 (N) (193 N)	A1
(iii)	\mathbf{F}_{A} goes up \mathbf{F}_{B} goes down To obtain the same moment a smaller force is required if the distance from the pivot increases / $(F_{A} + F_{B})$ is a constant /	B1 B1
	weight (of painter) transfers from support B to support A	B 1

(a)(i)	pressure = force / area	B1
(ii)	moment = force multiplied by the <u>perpendicular</u> distance (from the line of action of the force) to the <u>pivot</u>	B1
(b)(i)	force drawn vertically upwards at plunger	B1
	force drawn vertically at H	B1
(ii)	20 x 500 / force on Plunger x 120 (one correct moment stated)	B1
	Plunger force x 120 = (20 x 500)	B1
	Plunger force = 83(.3) (N)	A0
(c)(i)	pressure = force / area	
	$= 83 / 4 \times 10^{-3}$	C1
	= 20800 (Pa)	A1
(ii)	decrease area of plunger / decrease distance H to plunger / increase F / increase length of arm	B2 MAX 2