Answers: Revision Paper 5

Qu	estion	Answer	Marks	Guidano	re
1	(i)	$kx^{\frac{1}{2}-1}$ or $kx^{-\frac{1}{2}}$ seen	M1	k>0	B2 for correct answer unsupported
		$3x^{\frac{1}{2}}$ or $\frac{3}{\sqrt{x}}$ isw	Al	A0 for eg $3x^{-\frac{1}{2}} + c$	
			[2]		
1	(ii)	kx^{-2+1} or kx^{-1} oe seen	M1	for any non-zero k	SC0 for $\frac{12}{2x}$ or $\frac{6}{x}$
		$-12x^{-1}$ or $-\frac{12}{x}$ or $\frac{-12}{x}$ isw	Al		A0 for $\frac{12}{-x}$ or $\frac{12x^{-1}}{-1}$
		+ c	Al	seen at least once following integration	
					do not allow MR for integration of $12x^2$
_	400		[3]		
2	(i)	(i) [5], 10, 5, [10]	M1	ignore extra terms	condone wrongly attributed terms
		[10 + 5 + 10 =] 25	Al	not from wrong working	B2 for 25 unsupported
		(ii) 0	B1 [3]		
3		1.5 + (4-1)d = 12 or better	M1	or $1.5 \times r^{(4-1)} = 12$ or better	if first M0 B0 allow
		d = 3.5	Al	r = 2	B3 for d = 3.5 and r = 2; B2 for one of these; may be embedded in calculation of
		r = 2	B1	d = 3.5	difference
		$1.5 \times \text{their } 2^9 - (1.5 + 9 \times \text{their } 3.5) \text{ oe}$	M1	M0 for use of their S ₁₀ in either term	NB 768 – 33
		difference = 735	A1 [5]		allow -735

Qu	estion	Answer	Marks	Guidanc	e
4		$5.6^2 + 7.2^2 - 2 \times 5.6 \times 7.2 \times \cos 68$ seen	M1	may be implied by 53 or BC in range	
		53 or 53.0	M1	may be implied by BC in range	NB 52.9917243; (allow 47.7 to 47.71 from calculator in radian mode; may be implied by 6.90 to 6.91)
		[BC =] 7.3 or 7.27 to 7.28	Al	NB 7.27954	
		$\sin C = \frac{7.2 \times \sin 68}{\text{their } BC}$	M1	or $[\cos C] = \frac{\text{their } BC^2 + 5.6^2 - 7.2^2}{2 \times 5.6 \times \text{their } BC}$	
		66 or awrt 66.5	Al	allow 1.2 or awrt 1.16 (radians);	NB $\sin C = 0.917053$
		Alternatively eg if the perpendicular from B to AC, BX, is used	[5]	A0 for eg 1.2 degrees	cos C = 0.398766 eg if perpendicular from C to AB, CY, is used, mark as follows
		7.2 × cos 68 seen	M1*	if unsupported, B2 for 2.70 or better	5.6 × cos 68 seen
		2.7 or 2.697 to 2.70	Al		2.1 or 2.097 to 2.10
		XC = 5.6 - their AX	Mldep*	NB 2.902832527	BY = 7.2 - their AY
		$\tan C = \left[\frac{BX}{XC}\right] = \frac{7.2 \times \sin 68}{\text{their XC}}$	M1		$\tan B = \left[\frac{\text{CY}}{\text{BY}}\right] = \frac{5.6 \times \sin 68}{\text{their BY}}$
		66 or awrt 66.5	A1 [5]	allow 1.2 or awrt 1.19 (radians); A0 for eg 1.2 degrees	C [= 90 – B] = 66 or awrt 66.5

Qı	iestion	Answer	Marks	Guidano	e
5	(i)	sin kx	Ml	$k > 0$ and $k \neq 1$	condone use of other variable
		$y = \sin 2x$	Al	must see " $y = "$ at some stage for A1	$condone f(x) = \sin 2x$
			[2]		
5	(ii)	sketch of sine curve with period 360° and amplitude 1	B1	for $0 \le x \le 450$; ignore curve outside this range; do not allow sketch of $y = \cos x$ or $y = -\sin x$ for either mark	amplitude, period and centring on $y = -3$ must be clear from correct numerical scale, numerical labelling or comment; strokes on axes insufficient to imply scale: mark intent
		sine curve centred on $y = -3$ and starting at $(0, -3)$	B1 [2]		allow full marks if $y = \sin x$ and $y = \sin x - 3$ seen on same diagram
6	(i)	$\frac{1}{2}r^2\theta \text{ or } \frac{1}{2}a^2\sin\theta \text{ or } a^2\sin\frac{1}{2}\theta\cos\frac{1}{2}\theta \text{ seen}$ $\frac{1}{2}r^2\theta - \frac{1}{2}a^2\sin\theta \text{ isw oe}$	M1 A1 [2]	do not allow use of variable other than $ heta$	allow eg $\frac{\theta}{2\pi} \times \pi r^2 \text{ or } \frac{1}{2}a^2 \sin\!\left(\frac{180\theta}{\pi}\right) \text{ seen }$ oe
6	(ii)	$\frac{1}{2}a^{2} \sin 0.8 = \frac{1}{2} \times 12^{2} \times 0.8 - \frac{1}{2}a^{2} \sin 0.8 \text{ oe}$ [a =] 8.96 cao; mark the final answer	B1 B1	or eg $\frac{1}{2}a^2 \sin 0.8 = \frac{1}{4} \times 12^2 \times 0.8$ [= 28.8] or equivalent in degrees NB θ = 45.8366236° if unsupported, allow B2 for 8.96 or allow B1 for 9.0 or 8.96074to 4 sf or more	NB $a^2 = \frac{57.6}{0.717356} = 80.29485$ NB $\theta = 45.83662361^{\circ}$ NB $\frac{1}{2}\sin 0.8 = 0.35867$
			[2]		2

Oı	iestion	Answer	Marks	Guidano	re .
7	(i)	substitution of $\tan x = \frac{\sin x}{\cos x} \text{ or } \sqrt{1 - \sin^2 x} = \sqrt{\cos^2 x} \text{ or } \cos x$ in given LHS both substitutions seen and completion to $\sin x$ as final answer	M1 A1 [2]	if no substitution, statements must follow a logical order and the argument must be clear; if one substitution made correctly, condone error in other part of LHS NB AG; answer must be stated allow consistent use of other variable eg θ for both marks	condone omission of variable throughout for M1 only, but allow recovery from omission of variable at end M0 if first move is to square one or both sides Simply stating eg $\tan x = \frac{\sin x}{\cos x}$ is insufficient Alternatively SC2 for complete argument eg $\tan x = \frac{\sin x}{\cos x}$ [$\tan x = \frac{\sin x}{\cos x}$ [$\tan x \times \cos x = \sin x$] $\sin^2 x + \cos^2 x = 1$ $\cos x = \sqrt{1 - \sin^2 x}$ $\tan x = \frac{\sin x}{\sqrt{1 - \sin^2 x}}$ $\tan x \times \sqrt{1 - \sin^2 x} = \sin x$ oe
7	(ii)	0, 180, 360	Bl	all 3 required	$NB \sin y = 0 \text{ or } \frac{1}{4}$
		14 or 14.47 to 14.5 166 or awrt 165.5	B1 B1	radians: mark as scheme but deduct one from total $0, \pi, 2\pi$;	ignore extra values outside range if B3, deduct 1 mark for extra values
		100 of avail 105.5	[3]	0.25 or 0.253 or awrt 0.2527; 2.89 or 2.889 or awrt 2.8889	within range

Oı	iestion	Answer	Marks	Guidano	e
8	(i)	$\log_a 1 = 0$ soi or $3m\log_a a$ or $\log_a a^{-3m}$ seen	Ml	do not condone 3mloga	do not allow MR for $(\log_a a^m)^3$
		−3 <i>m</i> cao	Al		(5 /
			[2]		
8	(ii)	$(2x+1)\log_3 3 = \log_3 1000$ or $2x+1 = \log_3 1000$ oe	M1	Or $(2x+1)\log_{10} 3 = \log_{10} 1000 $ [= 3]	condone omission of brackets; allow omission of base 10 or consistent use of other base
		$[x=]$ $\frac{\log_3 1000 - 1}{2}$ oe	M1	or $[x=]$ $\frac{\frac{3}{\log_{10} 3} - 1}{2}$ oe	allow one sign error and / or omission of brackets
		2.64 cao; mark the final answer	A1	not from wrong working	allow recovery from bracket error for A1 0 if unsupported or for answer obtained by trial and error on $3^{2x+1} = 1000$
9	(i)	$\frac{h}{2}$ × (0 + 0 + 2[4 + 4.9 + 5 + 4.9 + 4]) oe	MI	correct formula used with 4, 5 or 6 strips and numerical value for h; condone omission of zeros or omission of outer brackets for both M marks	allow eg ½ × 1 × (4 + 4 + 2[4.9 + 5 + 4.9]) ½ × 1 × (4 + 0 + 2[4 + 4.9 + 5 + 4.9]) (NB may be implied by 18.8 & 20.8
		all non-zero y-values correctly placed	M1	M0M0 if 1, 2, 3 or 6 used as y-values (these are x-values)	respectively)
		h = 1 used in formula or consistently with two triangles and four trapezia	B 1	if M0M0 allow B1 for $h = 1$ and B2 for 22.8 from area of 4 trapezia and 2 triangles and B1 for 1140	
		area = 22.8 and volume = 1140 isw cao	Al	ignore units	if M0M0B0 allow SC4 for 22.8 and 1140 obtained correctly by other
			[4]		method

Q	uestion	1	Answer	Marks	Guidano	ce
9	(ii)	A	substitution of $x = 1.2$ or 4.8 to find y	Ml	allow substitution of $1.2 \le x \le 1.234$ or $4.766 \le x \le 4.8$	or M1 for y = 4.4, x = 1.234 [or 4.766] and
			y = 4.35 or 4.352 and correct comparison with	Al		Al for comparison of 1.234 with 1.
			4.4 isw	[2]		or 4.766 with 4.8 [so gap less than 3.6]
				[-]		5.01
9	(ii)	В	$F[x] = \frac{5}{81} \left(\frac{108}{2} x^2 - \frac{54}{3} x^3 + \frac{12}{4} x^4 - \frac{x^5}{5} \right) \text{ oe}$	M2	M1 for 3 correct terms; ignore +c	condone omission of $\frac{5}{81}$;
			10 10 5 1			M0 if $\frac{5}{2}x$ seen outside bracket
			$eg \frac{10}{3}x^2 - \frac{10}{9}x^3 + \frac{5}{27}x^4 - \frac{1}{81}x^5$		allow coefficients 3.333333, 1.11111, 0.185185, 0.01234567r.o.t to 2 sf or	but next M1 is still available;
					better	ignore subsequent attempt to
					or decimal equivalents in numerator:	evaluate c for first M2
					6.6666, 3.333333, 0.74074,	
					0.061728 r.o.t to 2 sf or better	
			$F[6] - F[0] \text{ or } 2 \times (F[3] - F[0])$	M1	dependent on at least two terms correctly	M0 for non-zero lower limit
					integrated in bracket; condone omission of - F(0)	
			24	Al	1(0)	24 unsupported does not score
			1200	B1		ignore units
				[5]		
10	(i)	\vdash	$(5.1^2-10.2)-(5^2-10)$			
			$\frac{(5.1^2 - 10.2) - (5^2 - 10)}{5.1 - 5} \text{ oe}$	M1	condone omission of brackets	0 for 8.1 unsupported
			8.1	Al		
				[2]		
				[4]		<u> </u>

0	iestion	Answer	Marks	Guidanc	_
10			MIdIKS	Guidanc	e
10	(ii)	$\frac{(5+h)^2-2(5+h)-\text{ their }15}{h}$ oe	M1	condone omission of brackets	
		$25 + 10h + h^2 - 10 - 2h$ oe seen	M1	allow one sign error	
		numerator is $8h + h^2$	Al		
		8 + h isw	A1 [4]		
10	(iii)	$h \rightarrow 0$	M1	may be embedded; allow eg "tends to 0"	M0 for differentiation of $x^2 - 2x$ M0 for following from part (i) M0 for $h = 0$
		their 8	Al	FT their $k + h$ from part (ii)	New York with a control of the contr
			[2]		
10	(iv)	y = 8x - 25 isw	B1	or $y - 15 = 8 (x - 5)$ isw or $y = 8x + c$ and $c = -25$ stated isw	
		non-zero numerical value for x -intercept on their straight line found	M1		
		[x =] 3.125 oe	Al	may be embedded in calculation for area	
		$\frac{1}{2}$ × their non-zero y-intercept × their $\frac{25}{8}$	M1	condone arithmetic slips in finding values of intercepts	or integration and evaluation of their $\int_{0}^{23} (8x - 25) dx$;
		$\frac{625}{16}$ or $39\frac{1}{16}$ or 39.0625 isw	Al	accept rounded to 1 dp or better for A1; but A0 if final answer negative	lower limit must be 0
		10	[5]	and the state of t	

Oı	iestion	Answer	Marks	Guidano	e
11	(i)	$\log_{10} y = \log_{10} a + bt \text{ www}$	B1	B0 for just $\log_{10} y = \log_{10} a + bt \log_{10} 10$	allow omission of base throughout question
		gradient is b , intercept is $\log_{10} a$ cao	B2	B1 for one correct; award independently of their equation; must be stated – linking by arrows etc is insufficient; condone $m = b$ and $c = \log a$	ignore <i>t</i> -intercept is $\frac{-\log_{10} a}{b}$ B0 for gradient is bt
			[3]	Condone m = b and c = log a	
11	(ii)	1.58, 1.8[0], 1.98, 2.37, 2.68	Bl	allow values which round to these numbers to 2 dp;	all values must be correct
		all values correct and all plotted accurately	B1	within tolerance on overlay;	
		ruled line of best fit for at least $1 \le t \le 10$	В1	within tolerance on overlay: must not cut red or green line; line between (1, 0.6) and (1, 1.05) at lower limit and between (10, 2.3) and (10, 2.75) at upper limit;	use ruler tool to check if line is ruled where necessary; tolerance: one small square horizontally at each end; not dependent on correct plots
		evaluation of $\frac{\log y_2 - \log y_1}{t_2 - t_1}$	M1	$(t_1, \log y_1)$ and $(t_2, \log y_2)$ are points on their line	condone use of values from table
		or substitution of $(t_1, \log y_1)$ and $(t_2, \log y_2)$ in $\log y = bt + \log a$ to obtain a numerical value for the gradient		gradient must be identified as b for $A1$	
		$0.14 \le b \le 0.24$	Al	graden most of identified as 0 101 111	
		$2.5 \leq a \leq 6.3$	B1	must be identified as a; not from wrong	if M0A0B0M0 allow SC3 for
		$y = \text{their } a \times 10^{\text{their}b \times t} \text{ or } y = 10^{\text{their}bt + \text{their } \log a}$ or $10^{\text{their } \log a} \times 10^{\text{their}b \times t}$ oe	MI	working	substitution directly into given formula to obtain $y = a10^{bt}$ with a and b in acceptable range
		a and b or $\log a$ and b both in acceptable range	A1 [8]	$0.4 \le \log a \le 0.8$	
11	(iii)	260 or 261	B1 [1]	B0 for non-integer answer	